Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12323/6987
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAllahverdiev, Bilender P.-
dc.contributor.authorBairamov, Elgiz-
dc.contributor.authorUgurlub, Ekin-
dc.date.accessioned2023-11-06T12:59:52Z-
dc.date.available2023-11-06T12:59:52Z-
dc.date.issued2012-12-
dc.identifier.citationJournal of Mathematical Analysis and Applicationsen_US
dc.identifier.urihttp://hdl.handle.net/20.500.12323/6987-
dc.description.abstractIn this paper, we investigate the nonselfadjoint (dissipative) boundary value transmission problems in Weyl’s limit-circle case. At first using the method of operator-theoretic formulation we pass to a new operator. After showing that this new operator is a maximal dissipative operator, we construct a selfadjoint dilation of the maximal dissipative operator. Using the equivalence of the Lax–Phillips scattering function and the Sz.-Nagy-Foiaş characteristic function, we show that all eigenfunctions and associated functions are complete in the space L 2 w (Ω).en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofseriesVol. 401;№ 1-
dc.subjectDissipative operatorsen_US
dc.subjectTransmission conditionen_US
dc.subjectEigenvalue problemen_US
dc.titleEigenparameter dependent Sturm–Liouville problems in boundary conditions with transmission conditionsen_US
dc.typeArticleen_US
Appears in Collections:Publications



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.