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a b s t r a c t

In this paper, we investigate the nonselfadjoint (dissipative) boundary value transmission
problems in Weyl’s limit-circle case. At first using the method of operator-theoretic for-
mulation we pass to a new operator. After showing that this new operator is a maximal
dissipative operator, we construct a selfadjoint dilation of the maximal dissipative oper-
ator. Using the equivalence of the Lax–Phillips scattering function and the Sz.-Nagy-Foiaş
characteristic function, we show that all eigenfunctions and associated functions are com-
plete in the space L2w(Ω).

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

It is important in the literature to know when the spectral parameter is both in the equation and boundary conditions,
whether the spectral analysis changes or not. There are a lot of works that answer that question. How the approach to
such problems should be done belongs to Friedman [5]. Following this work, a lot of problems have been studied in this
area [6,8,18]. But in all theseworks, the boundary value problems are selfadjoint and so their eigenvalues and eigenfunctions
are real. On the other hand an important class of nonselfadjoint operators is the class of dissipative operators. It is well-
known that all eigenvalues of a dissipative operator lie in the closed upper half-plane. But this analysis is so weak, namely,
there is no answer to the question of whether the linear combinations of all eigenfunctions and associated functions span
the whole space or not. It is fortunate that there are some methods answering these questions. One of these methods is the
functional model belongs to Sz.-Nagy–Foiaş [12]. In this method the characteristic function of contractive operators may
answer the question of whether the eigenfunctions and associated functions are complete or not. But the direct method to
pass to the characteristic functions is hard. However, the Lax–Phillips scattering function can be identified as a characteristic
function of a maximal dissipative operator in case the subspaces D− and D+ of a Hilbert space H , called the incoming and
outgoing subspaces, respectively, satisfy the conditions,

(1) UtD− ⊂ D−, t ≤ 0; UtD+ ⊂ D+, t ≥ 0,

(2)

t≤0

UtD− =


t≥0

UtD+ = {0} ,

(3)

t≤0

UtD+ =


t≥0

UtD− = H,

(4) D− ⊥ D+,

where Ut is a unitary group [9].
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Nonselfadjoint boundary value problems were investigated in detail in [2,3,14,15].
On the other hand, regular selfadjoint (symmetric) boundary value transmission problems (BVTPs) have been investi-

gated in recent years. There are a lot of works about the spectral analysis of such operators [1,10,17].
In this paper we investigate the singular dissipative BVTPs with the spectral parameters in the boundary conditions. We

show that all eigenfunctions and associated functions of these problems are complete in the space L2w(Ω).

2. Construction of the maximal dissipative operator with the help of the operator-theoretic formulation

Let us consider the differential expression

ℓ(y) :=
1

w(x)


−y′′

+
ν2 −

1
4

x2
y + q(x)y


, x ∈ (0, c) ∪ (c,∞),

where 0 ≤ ν < 1.We setΩ1 := (0, c),Ω2 := (c,∞) andΩ := Ω1∪Ω2. The point c is regular for the differential expression
ℓ. The functions w and q are real-valued Lebesgue measurable functions onΩ and w, q ∈ L1loc(Ωk), k = 1, 2, w(x) > 0 for
almost all x ∈ Ω . The point c is regular ifw, q ∈ L1[c − ϵ, c + ϵ] for some ϵ > 0.

We can introduce the Hilbert space L2w(Ω) consisting of all complex-valued functions such that


∞

0 w(x) |y(x)|2 dx < ∞

with the inner product

(y, z) =


∞

0
w(x)y(x)z(x)dx.

Denote by D the linear set of all functions y ∈ L2w(Ω) such that y′ is a locally absolutely continuous function onΩ1 and
Ω2, and ℓ(y) ∈ L2w(Ω). Since c is a regular point for ℓ(y), one-sided limits y(c±), y′(c±) exist and are finite. We define the
maximal operator L on D by the equality Ly = ℓ(y).

For arbitrary y, z ∈ D we set [y, z]x := W [y, z]x := (yz ′
− y′z)(x). Green’s formula

∞

0
w(x)ℓ(y)zdx −


∞

0
w(x)yℓ(z)dx = [y, z]c− − [y, z]0 + [y, z]∞ − [y, z]c+

implies that, for all functions y, z ∈ D, the limits [y, z]0 := limx→0+[y, z]x, [y, z]c± := limx→c±[y, z]x and [y, z]∞ :=

limx→+∞[y, z]x exist and are finite.
Denote by D0 the linear set of all function y ∈ D such that

[y, z]0 = y(c−) = y′(c−) = y(c+) = y′(c+) = [y, z]∞ = 0,

for arbitrary z ∈ D.
Let us denote the restriction of the operator L to D0 by L0. It is clear that L0 is the minimal operator generated by ℓ. The

minimal operator L0 is a symmetric operator with deficiency indices (n, n) (2 ≤ n ≤ 4) and L∗

0 = L [4,16,19].
Assume thatw, q are such thatWeyl’s limit-circle case holds at 0 and∞, i.e., the symmetric operator L0 has the deficiency

indices (4, 4) [4,16,19]. There are several sufficient conditions that guarantee Weyl’s limit-circle case [7,13].
Let us set u =


u1, x ∈ Ω1
u2, x ∈ Ω2

and v =


v1, x ∈ Ω1
v2, x ∈ Ω2

satisfying
u1(k) = 1, u′

1(k) = 0,
v1(k) = 0, v′

1(k) = 1,


u2(l) = 1, u′

2(l) = 0,
v2(l) = 0, v′

2(l) = 1,

where k ∈ Ω1 and l ∈ Ω2. Then {u, v} is the fundamental system of the equation ℓ(y) = 0 (x ∈ Ω).
Let us consider the BVTP as

ℓ(y) = λy, y ∈ D, x ∈ Ω, (2.1)

α1[y, u]0 − α2[y, v]0 = λ

α′

1[y, u]0 − α′

2[y, v]0

, (2.2)

[y, u]∞ − h[y, v]∞ = 0, ℑh > 0, (2.3)
γ1y(c−) = δ1y(c+), (2.4)

γ2y′(c−) = δ2y′(c+), (2.5)

where λ is a complex spectral parameter, α1, α
′

1, α2, α
′

2 ∈ R := (−∞,∞), ρ := α′

1α2 − α′

2α1 > 0, γ1γ2 > 0 and δ1δ2 > 0.
It is important to construct a suitable Hilbert space to analyze the BVTP (2.1)–(2.5). So we introduce the Hilbert space

H := L2w1
(Ω1)⊕ L2w2

(Ω2)⊕ C = L2w(Ω)⊕ C with the inner product

⟨Y , Z⟩H = γ1γ2

 c

0
w1(x)y(x)z(x)dx + δ1δ2


∞

c
w2(x)y(x)z(x)dx +

γ1γ2

ρ
y1z1,

where Y =


y(x)
y1


, Z =


z(x)
z1


andw(x) =


w1(x), x ∈ Ω1
w2(x), x ∈ Ω2.
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Let us adopt the notations: R−(y) := α1[y, u]0 − α2[y, v]0, R′
−
(y) := α′

1[y, u]0 − α′

2[y, v]0, R+(y) := [y, u]∞ − h[y, v]∞,
R1(y) := γ1y(c−)− δ1y(c+), R2(y) := γ2y′(c−)− δ2y′(c+).

Denote by D(Ah) the linear set of all vectors Y =


y(x)
y1


∈ H such that y ∈ D, R+(y) = 0, R1(y) = 0, R2(y) = 0 and

R′
−
(y) = y1. We define the operator Ah on D(Ah) as follows

AhY =ℓ(Y ) :=


ℓ(y)
R−(y)


.

Thus, we can pose the BVTP (2.1)–(2.5) in H as

AhY = λY , Y =


y(x)
R′

−(y)


∈ D(Ah).

Now, let us define two ‘‘basic’’ solutions of (2.1) as φ(x, λ) =


φ1(x, λ), x ∈ Ω1
φ2(x, λ), x ∈ Ω2

and χ(x, λ) =


χ1(x, λ), x ∈ Ω1
χ2(x, λ), x ∈ Ω2

satisfying
the initial and transmission conditions

[φ1, u]0 = α2 − λα′

2, [φ1, v]0 = α1 − λα′

1,
[χ2, u]∞ = h, [χ2, v]∞ = 1,

and 
φ2(c+, λ) =

γ1

δ1
φ1(c−, λ), φ′

2(c+, λ) =
γ2

δ2
φ′

1(c−, λ),

χ1(c−, λ) =
δ1

γ1
χ2(c+, λ), χ ′

1(c−, λ) =
δ2

γ2
χ ′

2(c+, λ).

We set∆1(λ) := W [φ1, χ1]x = [φ1, χ1]x (x ∈ Ω1) and∆2(λ) := W [φ2, χ2]x = [φ2, χ2]x (x ∈ Ω2). From the constants
of the Wronskians and using the transmission conditions at the point c for the solutions φ and χ , we have

∆1(λ) =
δ1δ2

γ1γ2
∆2(λ), ∀λ ∈ C.

So the zeros of∆1 and∆2 coincide.
If we define∆(λ) = ∆1(λ) =

δ1δ2
γ1γ2

∆2(λ), then from the definition of∆we get that the function∆ is the entire function.
It is clear that the eigenvalues of the BVTP (2.1)–(2.5) coincide with zeros of∆.

Theorem 2.1. The operator Ah is maximal dissipative in the space H.

Proof. Ah is dissipative in the space H . In fact, let Y ∈ D(Ah) (D(Ah) is dense in H). Then

⟨AhY , Y ⟩H − ⟨Y , AhY ⟩H = γ1γ2[y, y]c− − γ1γ2[y, y]0 + δ1δ2[y, y]∞

− δ1δ2[y, y]c+ +
γ1γ2

ρ


R−(y)R′

−(y)− R′

−
(y)R−(y)


. (2.6)

If we use the equality

[y, y]∞ = [y, u]∞[y, v]∞ − [y, v]∞[y, u]∞

and (2.3) we have

[y, y]∞ = 2iℑh |[y, v]∞|
2 . (2.7)

Since y satisfies transmission conditions we obtain

[y, y]c− =
δ1δ2

γ1γ2
[y, y]c+. (2.8)

Further, the direct calculation gives

R−(y)R′
−(y)− R′

−
(y)R−(y) = ρ[y, y]0. (2.9)

Now inserting (2.7)–(2.9) in (2.6), we have

⟨AhY , Y ⟩H − ⟨Y , AhY ⟩H = 2iδ1δ2ℑh |[y, v]∞|
2 ,

and so Ah is a dissipative operator in H .
We easily prove that (see [1,10])

(Ah − λI)D(Ah) = H, ℑλ < 0.

So Ah is a maximal dissipative operator in H . �
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We shall remind that the linear operator T (with domain D(T )) acting in the Hilbert space H is called completely
nonselfadjoint (or simple) if there is no invariant subspace M ⊆ D(T ) (M ≠ {0}) of the operator T on which the restriction
T onM is selfadjoint.

Lemma 2.2. The operator Ah is completely nonselfadjoint (simple).

Proof. Let H ′
⊂ H be a nontrivial subspace in which Ah induces a selfadjoint operator A′

h with domain D(A′

h) = H ′
∩ D(Ah).

If G ∈ D(A′

h), then G ∈ D(A′∗

h ) and

0 =

A′G,G


H −


G, A′G


H

= γ1γ2[g, g]c−0 + δ1δ2[g, g]∞c+ +
γ1γ2

ρ


R−(g)R′

−(g)− R′

−
(g)R−(g)


= 2iℑhδ1δ2 |[g, v]∞|

2 ,

where [y, z]ηϱ = [y, z]η−[y, z]ϱ . From this for the eigenvectorsY (x, λ) =


y1(x, λ), x ∈ Ω1
y2(x, λ), x ∈ Ω2

of the operatorA′

h that lie inH ′ and
are eigenvectors ofAh, we have [y2, v]∞ = 0. From the boundary condition [y2, u]∞−h[y2, v]∞ = 0,we obtain [y2, u]∞ = 0
and so y2(x, λ) ≡ 0. From the transmission conditions, we get y1(c−, λ) = 0 and y′

1(c−, λ) = 0. By the uniqueness theorem
of the Cauchy problem for the system ℓ(Y ) = λY (x ∈ Ω1) we have y1(x, λ) ≡ 0. So we have Y (x, λ) ≡ 0. Hence by the
theorem on expansion in eigenvectors of the selfadjoint operator A′

h, we have H ′
= {0}, i.e., the operator Ah is simple. �

Definition 2.3. The system of functions y0, y1, . . . , yn is called a chain of eigenfunctions and associated functions of the
BVTP (2.1)–(2.5), corresponding to the eigenvalue λ0 if the conditions

ℓ(y0) = λ0y0, R−(y0)− λ0R′

−
(y0) = 0,

R+(y0) = 0,
R1(y0) = 0,
R2(y0) = 0,

ℓ(ys)− λ0ys − ys−1 = 0, R−(ys)− λ0R′

−
(ys)− R′

−
(ys−1) = 0,

R+(ys) = 0,
R1(ys) = 0,
R2(ys) = 0,
s = 1, 2, . . . , n,

are realized.

It follows from the Definition 2.3 that (see [11]), including their multiplicity, the eigenvalues of the BVTP (2.1)–(2.5) and
the eigenvalues of the maximal dissipative operator Ah coincide. Each chain of eigenfunctions and associated functions of
the BVTP (2.1)–(2.5)meeting the requirements of the eigenvalue λ0, corresponds to the chain of eigenvectors and associated
vectors Y0, Y1, . . . , Yn of the operator Ah corresponding to the same eigenvalue λ0. In this case, the equality

Yk =


yk

R′
−(yk)


, k = 0, 1, . . . , n (2.10)

takes place.

3. Scattering function of dilation, functional model of the dissipative operator and completeness theorems

To pass to the theory of Lax–Phillips we shall construct a selfadjoint dilation of the maximal dissipative operator Ah. For
this purpose, we add L2(R−) ‘‘incoming’’ and L2(R+) ‘‘outgoing’’ channels, where R− := (−∞, 0] and R+ := [0,∞), to the
Hilbert space H and we form the main Hilbert space H as follows

H = L2(R−)⊕ H ⊕ L2(R+).

Let us denote by P : H → H and P1 : H → H the mappings acting according to the formulae P : ⟨ϕ−, Y , ϕ+⟩ → Y and
P1 : Y → ⟨0, Y , 0⟩.

In the space H, we consider the operator Lh generated by the expression

L ⟨ϕ−, Y , ϕ+⟩ =


i
dϕ−

dξ
,ℓ(Y ), i dϕ+

dζ


(3.1)

on the set D(Lh): such that ϕ∓ ∈ W 1
2 (R∓), Y ∈ H, y1 = R′

−
(y), satisfying the conditions [y, u]∞ − h[y, v]∞ =

β
√
δ1δ2

ϕ−(0),

[y, u]∞ − h[y, v]∞ =
β

√
δ1δ2

ϕ+(0), R1(y) = 0, R2(y) = 0, where W 1
2 is the Sobolev space and β2

:= 2ℑh, β > 0. Then we
have

Theorem 3.1. The operator Lh is selfadjoint in H.
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Proof. Suppose that y = ⟨ϕ−, F , ϕ+⟩ , z = ⟨ψ−,G, ψ+⟩ ∈ D(Lh). Then we have

(Lhy, z)H − (y,Lhz)H = γ1γ2[f , g]c− − γ1γ2[f , g]0 + δ1δ2[f , g]∞

− δ1δ2[f , g]c+ +
γ1γ2

ρ


R−(f )R′

−(g)− R′

−
(f )R−(g)


+ iϕ−(0)ψ−(0)

− iϕ+(0)ψ+(0) = δ1δ2[f , g]∞ + iϕ−(0)ψ−(0)− iϕ+(0)ψ+(0)

= δ1δ2[f , g]∞ −
δ1δ2

iβ2


([f , u]∞ − h[f , v]∞)


[g, u]∞ − h[g, v]∞


−


[f , u]∞ − h[f , v]∞


([g, u]∞ − h[g, v]∞)


= 0.

So Lh is a symmetric operator in H and D(Lh) ⊆ D(L∗

h).

It is sufficient to show that L∗

h ⊆ Lh. To prove that Lh is selfadjoint, let us consider the bilinear form (Lhy, z)H on
elements z = ⟨ψ−,G, ψ+⟩ ∈ D(L∗

h), where y = ⟨ϕ−, 0, ϕ+⟩ , ϕ± ∈ W 1
2 (R±), ϕ±(0) = 0. Integrating by parts, we obtain

(Lhy, z)H =


i
dϕ−

dξ
, 0, i

dϕ+

dζ


, ⟨ψ−,G, ψ+⟩


H

= i
 0

−∞

ϕ′

−
ψ−dξ + i


∞

0
ϕ′

+
ψ+dζ =


⟨ϕ−, 0, ϕ+⟩ ,


i
dψ−

dξ
,G∗, i

dψ+

dζ


H
,

where ψ± ∈ W 1
2 (R±),G∗

∈ H . Analogously, if y = ⟨0, F , 0⟩ ∈ D(Lh), then integrating by parts in (Lhy, z)H, we obtain

L∗

hz =


i
dψ−

dξ
,ℓ(G), i dψ+

dζ


, g ∈ D, g1 = R′

−
(g). (3.2)

Consequently, from (3.2), we have (Ly, z)H = (y,Lz)H,∀y ∈ D(Lh), where the operator L is defined by (3.1). Therefore,
the sum of the integrated terms in the bilinear form (Lhy, z)H must be equal to zero:

γ1γ2[f , g]c− − δ1δ2[f , g]c+ = 0,
γ1γ2

ρ


R−(f )R′

−(g)− R′

−
(f )R−(g)


− γ1γ2[f , g]0 = 0,

δ1δ2 ([f , u]∞[g, v]∞ − [f , v]∞[g, u]∞)− iϕ+(0)ψ+(0)+ iϕ−(0)ψ−(0) = 0.

From the boundary conditions for Lh we have

R1(g) = 0, R2(g) = 0, (3.3)

and 
δ1δ2


ϕ−(0)


β +

ih
β


[g, v]∞ −

i[g, u]∞
β


− ϕ+(0)


ih[g, v]∞

β
−

i[g, u]∞
β


= iϕ+(0)ψ+(0)− iϕ−(0)ψ−(0). (3.4)

Comparing the coefficients of ϕ−(0) in (3.4), we get

[g, u]∞ − h[g, v]∞ =
β

√
δ1δ2

ψ−(0). (3.5)

Analogously, comparing the coefficients of ϕ+(0) in (3.4), we have

[g, u]∞ − h[g, v]∞ =
β

√
δ1δ2

ψ+(0). (3.6)

Therefore, conditions (3.3), (3.5) and (3.6) imply D(L∗

h) ⊆ D(Lh), hence Lh = L∗

h . �

It is well known that the selfadjoint operator Lh generates the unitary group Ut = exp(iLht) (t ∈ R) on H. Now let
Zt := PUtP1 (t ≥ 0). The family {Zt} (t ≥ 0) of operators is a strongly continuous semigroup of completely nonunitary
contractions on H [15].

Denote by Bh the generator of this semigroup: BhY = limt→+0
1
it (ZtY −Y ). The domain of Bh consists of all the vectors for

which the limit exists. The operator Bh is a maximal dissipative. The operator Lh is called the selfadjoint dilation of Bh [12].

Theorem 3.2. The operator Lh is a selfadjoint dilation of the operator Ah.
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Proof. It is sufficient to show that Bh = Ah and hence Lh is a selfadjoint dilation of the operator Ah. For this purpose let us
set the equality (Lh−λI)−1P1F = z = ⟨ψ−,G, ψ+⟩. Thenwe have (Lh−λI)z = P1F and thereforeℓ(G)−λG = F , ψ−(ξ) =

ψ−(0)e−iλξ and ψ+(ζ ) = ψ+(0)e−iλζ . Since z ∈ D(Lh), then ψ− ∈ L2(R−) and therefore ψ−(0) = 0. Hence G satisfies the
boundary condition [g, u]∞ −h[g, v]∞ = 0 and G ∈ D(Ah). It is known that a value λwith ℑλ < 0 can not be an eigenvalue
of a dissipative operator. So F = (Ah − λI)−1 G. Hence, for Y ∈ H and ℑλ < 0 we have

(Lh − λI)−1P1Y =


0, (Ah − λI)−1Y ,

√
δ1δ2

β


[g, u]∞ − h[g, v]∞


e−iλζ


.

Applying the mapping P to the last equality, we have

P(Lh − λI)−1P1Y = (Ah − λI)−1Y , Y ∈ H, ℑλ < 0. (3.7)

From (3.7), we obtain

(Ah − λI)−1
= P(Lh − λI)−1P1 = −iP


∞

0
Ute−iλtdtP1

= −i


∞

0
Zte−iλtdt = (Bh − λI)−1, ℑλ < 0,

and from which we have Ah = Bh. �

We set H− =


t≥0 UtD− and H+ =


t≤0 UtD+, where D− =

L2(R−), 0, 0


and D+ =


0, 0, L2(R+)


. Using Lemma 2.2

we get that (see [3, Lemma 3.3])

H− + H+ = H.

Let θλ(x) =


(θλ)1 (x), x ∈ Ω1
(θλ)2 (x), x ∈ Ω2

is the solution of (2.1) satisfying the conditions

[(θλ)1 , u]0 =
α′

2

ρ
, [(θλ)1 , v]0 =

α′

1

ρ

(θλ)2 (c+) =
γ1

δ1
(θλ)1 (c−), (θλ)

′

2 (c+) =
γ2

δ2
(θλ)

′

1 (c−),

and φλ(x) =


(φλ)1 (x), x ∈ Ω1
(φλ)2 (x), x ∈ Ω2

is the solution of (2.1) given in the Section 2.
Let us adopt the following notations:

n(λ) := −
[θλ, v]∞

[φλ, v]∞
, ω(λ) := −

[φλ, u]∞
[φλ, v]∞

, Φλ :=


φλ(x)
ρ


, (3.8)

Sh(λ) :=
ω(λ)+ h

ω(λ)+ h
. (3.9)

From (3.8), it follows that ω(λ) is a meromorphic function on the complex plane C with a countable number of poles on
the real axis. Further, it is possible to show that the function ω(λ) possesses the following properties: ℑλℑω(λ) < 0 for all
ℑλ ≠ 0, and ω(λ) = ω(λ) for all λ ∈ C, except the real poles of ω(λ).

We set

V−

λ (x, ξ , ζ ) =


e−iλξ ,

β
√
δ1δ2

n(λ) {(ω(λ)+ h) [θλ, v]∞}
−1Φλ, Sh(λ)e−iλζ


.

We note that the vectors V−

λ (x, ξ , ζ ) for real λ do not belong to the space H. However, V−

λ (x, ξ , ζ ) satisfies the equation
LhV = λV and the corresponding boundary conditions for the operator Lh.

We define the transformation F− : f → f−(λ) by (F−f)(λ) := f−(λ) :=
1

√
2π


f, V−

λ


H on the vectors f = ⟨ϕ−, F , ϕ+⟩ in

which ϕ−, ϕ+ and f are smooth, compactly supported functions.
The transformation F− isometrically maps H− onto L2(R). For all vectors f, g ∈ H− the Parseval equality and the inverse

formula hold [2,3,9,14,15]:

(f, g)H = (f−,g−)L2 =


∞

−∞

f−(λ)g−(λ)dλ, f =
1

√
2π


∞

−∞

f−(λ)V−

λ dλ.

We set

V+

λ (x, ξ , ζ ) =


Sh(λ)e−iλξ ,

β
√
δ1δ2

n(λ)

ω(λ)+ h


[θλ, v]∞

−1
Φλ, e−iλζ


.
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We note that the vectors V+

λ (x, ξ , ζ ) for real λ do not belong to the space H. However, V+

λ (x, ξ , ζ ) satisfies the equation
LhV = λV and the corresponding boundary conditions for the operator Lh. We define the transformation F+ : f →f+(λ)
by (F+f)(λ) := f+(λ) :=

1
√
2π


f, V+

λ


H on the vectors f = ⟨ϕ−, F , ϕ+⟩ in which ϕ−, ϕ+ and f are smooth, compactly

supported functions.
The transformation F+ isometrically maps H+ onto L2(R). For all vectors f, g ∈ H+ the Parseval equality and the inverse

formula hold [2,3,9,14,15]:

(f, g)H = (f+,g+)L2 =


∞

−∞

f+(λ)g+(λ)dλ, f =
1

√
2π


∞

−∞

f+(λ)V+

λ dλ.

According to (3.9), the function Sh(λ) satisfies |Sh(λ)| = 1 for λ ∈ R; therefore, it explicitly follows from the formulae
for the vectors V−

λ and V+

λ that

V−

λ = Sh(λ)V+

λ (λ ∈ R). (3.10)

Now to construct the scattering function we shall show that D− and D+ possess the conditions (1)–(4) given in the
Introduction. For this, see [2,3,14,15].

According to the theory of Lax–Phillips, F− is the incoming spectral representation for the group {Ut}. Similarly, F+

is the outgoing spectral representation for {Ut}. It follows from (3.10) that Sh(λ) : f− = Sh(λ)f+. According to [9], the
scattering function (matrix) of the group {Ut} with respect to the subspaces D− and D+, is the coefficient by which the
F−-representation of a vector f ∈ H must be multiplied in order to get the corresponding F+-representation:f+(λ) =

Sh(λ)f−(λ). Accordingly, we have proved the following:

Theorem 3.3. The function Sh(λ) is the scattering matrix of the group {Ut} (of the selfadjoint operator Lh).

Let K = ⟨0,H, 0⟩, so thatH = D− ⊕K ⊕D+. It follows from the explicit form of the unitary transformation F− that under
the mapping F−,

H → L2(R), f →f−(λ), D− → H2
−
, D+ → ShH2

+
,

K → H2
+

⊖ ShH2
+
, Ut f →


F−UtF−1

−
f−

(λ) = eiλtf−(λ). (3.11)

The formulas (3.11) show that our operator Ah is a unitary equivalent to the model dissipative operator with the
characteristic function Sh(λ) [2,3,12,14,15]. Since the characteristic functions of unitary equivalent dissipative operators
coincide [12], we have proved:

Theorem 3.4. The characteristic function of the maximal dissipative operator Ah coincides with the function Sh(λ) defined
by (3.9).

Characteristic function can answer the question of whether all eigenfunctions and associated functions of a maximal
dissipative operator span the whole space or not. This analysis can be done with ensuring that the singular factor s (λ) in
the factorization S (λ) = s (λ)B (λ) (B (λ) is the Blaschke product) is absent.

Theorem 3.5 ([2,3,14]). For all the values of h with ℑh > 0, except possibly for a single value h = h0, the characteristic function
Sh(λ) of the maximal dissipative operator Ah is a Blaschke product. The spectrum of Ah is purely discrete and belongs to the open
upper half-plane. The operator Ah (h ≠ h0) has a countable number of isolated eigenvalues with finite multiplicity and limit points
at infinity. The system of all eigenfunctions and associated functions of the operator Ah (h ≠ h0) is complete in the space H.

Since the eigenvalues of the BVTP (2.1)–(2.5) and the eigenvalues of the operator Ah coincide, including their multiplicity
and, furthermore, for eigenfunctions and associated functions of the BVTP (2.1)–(2.5), the formula (2.10) takes place, then
Theorem 3.5 is interpreted as follows.

Theorem 3.6. Let c be regular and the Weyl’s limit-circle case holds at the points 0 and ∞ for ℓ. Then the spectrum of the
BVTP (2.1)–(2.5) is purely discrete and belongs to the open upper half-plane. For all the values of h with ℑh > 0, except possibly
for a single value h = h0, the BVTP (2.1)–(2.5) (h ≠ h0) has a countable number of isolated eigenvalues with finite multiplicity
and limit points at infinity. The system of eigenfunctions and associated functions of this problem (h ≠ h0) is complete in the
space L2w(Ω).

4. Eigenparameter dependent nonselfadjoint problems with a singular inner point

In this section we consider the differential expression

ℓ(y) :=
1

w(x)


−y′′

+
ν2 −

1
4

x2
y + q(x)y


, x ∈ (0, c) ∪ (c,∞).
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We setΩ1 := (0, c),Ω2 := (c,∞) andΩ := Ω1 ∪Ω2. The points 0, c and ∞ are singular for the differential expression ℓ.
Let 0 ≤ ν < 1. The functions w and q are real-valued Lebesgue measurable functions on Ω and w, q ∈ L1loc(Ωk), k =

1, 2, w(x) > 0 for almost all x ∈ Ω .
Denote by D the linear set of all function y ∈ L2w(Ω) such that y′ is locally absolutely continuous function onΩ1 andΩ2,

and ℓ(y) ∈ L2w(Ω). We define the maximal operator L on D by the equality Ly = ℓ(y).
Green’s formula

∞

0
w(x)ℓ(y)zdx −


∞

0
w(x)yℓ(z)dx = [y, z]c− − [y, z]0 + [y, z]∞ − [y, z]c+

implies that, for all functions y, z ∈ D, the limits [y, z]0 := limx→0+[y, z]x, [y, z]c± := limx→c±[y, z]x and [y, z]∞ :=

limx→+∞[y, z]x exist and are finite.
Denote by D0 the linear set of all function y ∈ D such that

[y, z]c− − [y, z]0 = 0, [y, z]∞ − [y, z]c+ = 0,

for arbitrary z ∈ D.
Let us denote the restriction of the operator L toD0 by L0. It is clear that L0 is theminimal operator generated by ℓ [4,16,19].

The minimal operator L0 is a symmetric operator with deficiency indices (n, n) (0 ≤ n ≤ 4) and L∗

0 = L [4,16,19].
Assume that w, q are such that Weyl’s limit-circle case holds at 0, c and ∞, i.e., the symmetric operator L0 has the

deficiency indices (4, 4) [4,16,19].
If we consider the functions u =


u1, x ∈ Ω1
u2, x ∈ Ω2

and v =


v1, x ∈ Ω1
v2, x ∈ Ω2

, then {u, v} is the fundamental systemof the equation
ℓ(y) = 0 (x ∈ Ω) given in the Section 2.

Let us consider the BVTP as

ℓ(y) = λy, y ∈ D, x ∈ Ω, (4.1)

α1[y, u]0 − α2[y, v]0 = λ

α′

1[y, u]0 − α′

2[y, v]0

, (4.2)

[y, u]∞ − h[y, v]∞ = 0, ℑh > 0, (4.3)
γ1[y, u]c− = δ1[y, u]c+, (4.4)
γ2[y, v]c− = δ2[y, v]c+, (4.5)

where λ is a complex spectral parameter, α1, α
′

1, α2, α
′

2 ∈ (−∞,∞), α′

1α2 − α′

2α1 > 0, γ1γ2 > 0 and δ1δ2 > 0.
We introduce the Hilbert space H := L2w1

(Ω1)⊕ L2w2
(Ω2)⊕ C = L2w(Ω)⊕ C with the inner product

⟨Y , Z⟩H = γ1γ2

 c

0
w1(x)y(x)z(x)dx + δ1δ2


∞

c
w2(x)y(x)z(x)dx +

γ1γ2

ρ
y1z1,

where Y =


y(x)
y1


and Z =


z(x)
z1


andw(x) =


w1(x), x ∈ Ω1
w2(x), x ∈ Ω2.

Following the same method given in Sections 2–3 we arrive at the following results.

Theorem 4.1. LetWeyl’s limit-circle case holds at the points 0, c and∞ for ℓ. Then the spectrum of the BVTP (4.1)–(4.5) is purely
discrete and belongs to the open upper half-plane. For all the values of h with ℑh > 0, except possibly for a single value h = h0,
the BVTP (4.1)–(4.5) (h ≠ h0) has a countable number of isolated eigenvalues with finite multiplicity and limit points at infinity.
The system of eigenfunctions and associated functions of this problem (h ≠ h0) is complete in the space L2w(Ω).
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