Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12323/4648
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKerimov, Nazim B.-
dc.contributor.authorGoktas, Sertac-
dc.contributor.authorMaris, Emir A.-
dc.date.accessioned2020-07-21T07:47:27Z-
dc.date.available2020-07-21T07:47:27Z-
dc.date.issued2016-
dc.identifier.citationElectronic Journal of Differential Equationsen_US
dc.identifier.issn1072-6691-
dc.identifier.urihttp://hdl.handle.net/20.500.12323/4648-
dc.description.abstractIn this article, we consider the spectral problem −y 00 + q(x)y = λy, 0 < x < 1, y 0 (0) sin β = y(0) cos β, 0 ≤ β < π; y 0 (1) = (aλ + b)y(1) where λ is a spectral parameter, a and b are real constants and a < 0, q(x) is a real-valued continuous function on the interval [0, 1]. The root function system of this problem can also consist of associated functions. We investigate the uniform convergence of the spectral expansions in terms of root functions.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesVol. 2016;№ 80-
dc.titleUniform Convergence Of The Spectral Expansions In Terms Of Root Functions For A Spectral Problemen_US
dc.typeArticleen_US
Appears in Collections:Publications



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.