Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12323/4648
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kerimov, Nazim B. | - |
dc.contributor.author | Goktas, Sertac | - |
dc.contributor.author | Maris, Emir A. | - |
dc.date.accessioned | 2020-07-21T07:47:27Z | - |
dc.date.available | 2020-07-21T07:47:27Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Electronic Journal of Differential Equations | en_US |
dc.identifier.issn | 1072-6691 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12323/4648 | - |
dc.description.abstract | In this article, we consider the spectral problem −y 00 + q(x)y = λy, 0 < x < 1, y 0 (0) sin β = y(0) cos β, 0 ≤ β < π; y 0 (1) = (aλ + b)y(1) where λ is a spectral parameter, a and b are real constants and a < 0, q(x) is a real-valued continuous function on the interval [0, 1]. The root function system of this problem can also consist of associated functions. We investigate the uniform convergence of the spectral expansions in terms of root functions. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartofseries | Vol. 2016;№ 80 | - |
dc.title | Uniform Convergence Of The Spectral Expansions In Terms Of Root Functions For A Spectral Problem | en_US |
dc.type | Article | en_US |
Appears in Collections: | Publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Uniform Convergence Of The Spectral Expansions In Terms Of Root Functions For A Spectral Problem.pdf | 308.72 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.