Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12323/4642
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKerimov, Nazim B.-
dc.contributor.authorIsmailov, Mansur I.-
dc.date.accessioned2020-07-21T07:07:31Z-
dc.date.available2020-07-21T07:07:31Z-
dc.date.issued2013-06-
dc.identifier.citationMathematical Physicsen_US
dc.identifier.urihttp://hdl.handle.net/20.500.12323/4642-
dc.description.abstractThis paper considers the initial-boundary value problem for the heat equation with a dynamic type boundary condition. Under some regularity, consistency and orthogonality conditions, the existence, uniqueness and continuous dependence upon the data of the classical solution are shown by using the generalized Fourier method. This paper also investigates the inverse problem of finding a time-dependent coefficient of the heat equation from the data of integral overdetermination condition.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesVol. 80;№ 5-
dc.titleDirect And Inverse Problems For The Heat Equation With A Dynamic Type Boundary Conditionen_US
dc.typeArticleen_US
Appears in Collections:Publications

Files in This Item:
File Description SizeFormat 
Direct And Inverse Problems For The Heat Equation With A Dynamic Type Boundary Condition.pdf174.09 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.