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THE RESOLVENT OF IMPULSIVE SINGULAR
HAHN-STURM-LIOUVILLE OPERATORS

BILENDER P. ALLAHVERDIEV, HUSEYIN TUNA®, HAMLET A. ISAYEV

Abstract. In this study, the resolvent of the impulsive singular Hahn—Sturm—
Liouville operator is considered. An integral representation for the resolvent of
this operator is obtained.

1. Introduction

Impulsive differential equations are one of the interesting topics in the
theory of differential equations. These equations serve as basic models to study
the dynamics of processes that are subject to sudden changes in their states.
These types of problems are especially encountered in heat and mass transfer
problems ([I7]). There are many studies on this subject in the literature |2}
6, 17, |8, [ (12, 13} 14) 19, 23].

W. Hahn introduced the concept of the Hahn derivative to the literature
in 1949 [10]. With this definition he made, he gathered two important opera-
tors under a single structure. These are the g-difference and forward difference
operators. In 2018, Annaby et al. [4] using this definition instead of the classi-
cal derivative, investigated the fundamental properties of the Sturm-Liouville
problems. In [5], the authors studied singular g-Sturm-Liouville equations.
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In [I8], the author studied a g-analog of the singular Dirac problem. Recently
in [21], the author proved a spectral expansion theorem by constructing the
spectral function of the Hahn—Sturm—Liouville equation in the singular case
under impulsive conditions.

In this paper, our aim is to consider Hahn—Sturm-Liouville problems under
impulsive boundary conditions. The integral representation of the resolvent
operator corresponding to this type of problem will be obtained using Weyl’s
method [16], 22, 24].

2. Preliminaries

Now, we provide a concise overview of the Hahn calculus [3| 4, 10} [IT]. Let
g€ (0,1),wp:=w/(1=¢q), w>0,and let ¥:J C R — R be a function
such that wg € J.

DEFINITION 2.1 ([I0], [11]). The Hahn derivative D,, ¥ is defined by

V)@ g

Dy, VU (¢) = wt(g=1)¢
) {‘I’/(wo), ¢ = wo,

where the expression ¥’ (wg) shows the ordinary derivative of ¥ at wy.

DEFINITION 2.2 ([3]). Let a,b,wq € J. The Hahn integral (w, q-integral) is
defined by

/ab\If (€) duwqC == /wb U (C)dyoC — /a U () du o,

0 wo

where

¢ s _.n
[ vOdati= -0 e (T, ceu
w n=0

0

provided that the series converges at ( = a and { = b.
DEFINITION 2.3. The w, g- Wronskian of V1 and W5 is defined by

Ww,q (\Ill, \112) = \Ilew,q\II2 - \IJQDwgllll.
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3. Main results

Let us consider the following impulsive boundary-value problem (BVP)

B1) =D Dy (@ +0 Q) =W (O, CE (b dUd o).
(3.2) y(wo. N) cos B+ D_u 1y(wo, ) sin § = 0,

(3.3) y(d—) =mny(d+),

(3.4 D 3y(d-) = 1D s s (i),

(3.5) y(q:ln,)\)COS'ijD_z7éy (qln,A)sm:o,

where ¢ € (0,1), wp :=w/(1—¢q), w > 0, v, f € R, q% >d, n €N :=
{1,2,3,...}, n>0, A€ C, y(d+) := lim¢_,4+ y (¢), v is a real-valued contin-
uous function on [wp,d) U (d, 00), and has finite limits v(d=+).

A similar problem has been studied by the authors without impulsive

boundary conditions ([1]).
H, = L2 ,(wo,d) + L2, (d i), L >dneNH= L2 (w.d)+

Y qn
L2, (d,00)) is a Hilbert space endowed with the following inner product

‘@ roo
<y, Z>n = / y(l)z(l)dwﬂc + / y(2)z(2)dw,QC7
wo d

d _ oo} .
({y,2) = / y V204, ¢ + / @24, ,0),

0 d

where

[y, e fund),
v = { yO(0), ¢ € (doo).

and

_ Z<1)(C)7 e [wOvd)v
2(() = { 2®(0), ¢ e (d, o).
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Let

_ [ wOEN), € wo,d),
¥ (¢A) = { v (¢, N), ¢ e (d, ),

and
O, ¢l
9(4—’ A) a { 9(2) (Cv)‘)7 CE (d,OO),

be solutions of Eq. (3.1) satisfying the following conditions
M (wo, A) = cos B, D_w 19 (wp, A) = sin 3,
a’q

0D (wo,\) =sin 8, D_w 100 (wy,\) = —cos 3,
q

1
’q

and
0 (d—,A\) =nb (d+, ),

D 0 (d+, \),

1
0(d—,\)=-D_.
no e

1
q

Q€

Y (d—, A) =ny (d+,A),
1
D_g st (d=2) = | D_g st (A4 ).
Then the solution of Eq. be represented
1
Y(EA) +L(A )6

which satisfies the boundary condition

Hence
B (L, 2) coty + D_w 19 (£, )
o(x @) " 0@ (E N coty + D_e 100@) (L, 0)
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LEMMA 3.1. Let
1
(G A) 4+ £( A, — )6, A
24 (6N =9GN +E(A )0,

where Z 1+ € Hy and qin > d, n € N. Then, for each nonreal X\, the following
relations hold:

%(C/\)—>Z(C)\) n — 00,

/wd Z 4. (¢, )‘ W,qC‘F/dQITL

d
VAN ,qg+/ |Z(C, N dw g, 1 — 0.

wo

% (¢, )‘)’ duw,qC

PRrOOF. It is immediate that
1
Za (6N =2+ [((A ) = m]eie

where Z(-,\) € H and m()) is the Titchmarsh-Weyl function. £(\, -2 o) varies
on a circle with a finite radius r1 in the plane. In the limit-circle case,

O(A, q%) — m(A) (n — 00); therefore

Hence

d
L,

2 i 2
2PN doat + [T 72| it

q

] o+ [ [N s 0 o0)

wo

due to Z(-,A\) € H. In the limit-point case, we find

1
If(/\7q7)— mA) <7

qm"

-1
:<2Im)\[/ 10D (C, \)[2de, o€ + / \0<2)<<,A>|2dw,q<}> ,
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where ImA # 0. As r1 — 0, Z1 ((,\) = Z((,\) (n — o0). Moreover, we
have

+/d,,
_ (e(x, qln) —m(A)’2 ( 3

d = -1
< <4<ImA)2 [ / 100 (¢, M) Pdu o€ + / ' |0<2><<,A>|2dw,q<]> :
wo d

which implies that

a ) 1
[ |20en] do+ [
wo q d
d

20| dust + [ 2PN ot ©

{e(n ) =m0} o

00 (¢, ) Pdu ¢ + / |9<2><c,A>|2dw,qc>

z9(. N[ dugc

—

wo

Let f € H, (q% > d, n € N). Define

i o [ ZaEN0EN), <,

(0 (0o = B¢ N2 (6, A), «>¢,
d

(R NECA) = [ G (Ce NV ()dugs

/ G%g7§)\f()()wqg7 )\EC

Without loss of generality, we can assume that A = 0 is not an eigenvalue of
the BVP - . Now let us prove that the resolvent operator is compact.
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THEOREM 3.2. G 1 (¢,5) (A=0) (ﬁ > d, n € N) defined as (3.6)) is a
w, q-Hilbert—Schmidt kernel, i.e.,

d rd
/ |Gﬁ(<7§)|2dw,qfdqu§ < +oo,

0 Y Wo

[ 716 460 Py < +oc.
d d 4

PRrROOF. By (3.6)), it is obvious that

d d
/ dw,qC/ ’qun (€5 6)Pdu g5 < +o00,
wo wo

:‘“

1
/q dw,qC/ |Gin (C7C)|2dw,qg < +OO,
d d 4

due to Z1 (- A),0(-,\) € Hy (5= > d, n € N). Hence

d pd
| [ 164 € st < o0,

0 Y Wwo

1 1
(3.7) [ 716 0 P s < +oc. O
d d 4

THEOREM 3.3 (|20]). Let A{t;} = {x;}, i € N, where

(3.8) vi =Y mitr, i,k €N,
k=1
If
(3.9) [mik|? < +o0,
i,k=1

then the operator A is compact in 12.
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THEOREM 3.4. Let T be the w, q-integral operator T: H, — H, (% > d,
n € N),

ffo G 1, (¢,6) F D (S)dus g5, € € [wo, ),
(TH)(6) = 1
Ji 1 (6) FPUDdu s, €€ (d, 5],

where

[ 190, ¢ e ),
f(o‘{ 19, Ce(d b

Then T is a compact self-adjoint operator in space H,,.

PROOF. Let

d)z(’l)(c)a Ce [w07d>7 . 1
i — Qi = ) Na n d
Prm o) { 620, ce@r], TN @z

be a complete, orthonormal basis of H,. Let i,k,n € N, = > d. Write

d -
ti=(frddn= | FO) M (O)dugC

wo

*/wﬂ”@mﬁqmwa
d

oo = [0 (gD
xz—<g7¢z>n—/ g (C)¢z (C)dw,qg

0

:\H

* / " 4@ 6P (Ol
mk// (¢ (1)(C)¢(1)(€) duw,qCdw,qS

/ / G, (6:6) 6 () 0 (6 gClus .

H, is mapped isometrically on to [?. By this mapping, 7 transforms into
the operator A defined by (3.8) in [? and (3.7) is translated into (3.9)). By
Theorems [3.2] and [3.3] we see that A and T are compact operators.
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Let h,g € H, and = > d, n € N. Then we have
. _ > _
(Thghn = [ (THOYOTIC)du + /d (Th®) (gD (C)d o
d d
— [ ] 64 (€ONV(derass DOt

+ / q / G (C6) P (6) g @ () g
d d 4

d d
=/ h(q) (/ G, (<7<)9<1>(C)dw,qé> o qs

1

+/dq h(q) (/ " G (s:6) g(2>(C)dw,qC> du,gS

= <h, Tg>na

since G 1 (¢, ) is a symmetric function. O

m, qm

From Theorem |3 . we conclude that 7 has a discrete spectrum. Let A\, 1

and
A 60 4 (G A )y €€ [wo,d) mnen Lsa
m, L = K m,n €N, —>
: eg?ﬁ(g,xm#), ¢e(d X, q

be the eigenvalues and eigenfunctions of the BVP (3.1)—(3.5) and
1

d
@ = [ O s+ [0 (s

q 7

By Theorem and the Hilbert—-Schmidt theorem, we infer that

(3.10) /W ’

0o
Z '
- 2
(6%
m=1 m,q%

[ "0

d q% 2
| 10060, Ot + [T 1002, 0t
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Define

— Z a21 , for A <0,
1

m, =

A<A7n%<0 q™
01 (N) = !
a g — L for A>0.
1
0<A 1 <x ™ar
vq'I’L

Then, (3.10) can be written as

1
n’

a1 [0 e [T OO dut = [ 1P e )

where

d ) rua )
FO) = [ 10060 g+ [T D00 (Ot

1
> qm

LEMMA 3.5. For any positive S, there is a positive number B = B (S) not
depending on n so that

1

s
\/qun(A) = = 04 (8) =0 (=5) < B.
-5 —S<A,, 1 <S5 ™,

!qn

1
qT

PROOF. Let sin 8 # 0. Since 6({, \) is continuous in domain —S < A\ <
S, [wo,d)U(d, q%], and the condition 8™ (wp, \) = sin 3, there exists a positive
number A such that for |A| < S,

wo+h 2 1
/ 0(1)(§,A)dw7q4> >§sin26.

1
(3.12) 2 (
Let

%7 w0§<§w0+h7
0, ¢ > wo + h.

fn(Q) = {

From (3.12)), we find

woth oo wo+h 2
| sdac =5 = | (;L / e<1><<,A>dw,q<> do, (N

wo —00



The resolvent of impulsive singular Hahn—Sturm—Liouville operators

- 0

> soin® o, (8) - 0. (-5)}.

If sin 8 = 0, then we define f,({) as

LG L e s

This proves the lemma.

33

O

Now, we will give an expansion into a Fourier series of resolvent. By w, ¢-

integration by parts, we obtain

/w d [;D_§73Dw,qy(l) (¢ N =)y (¢ A)} Oy (OderoC
[T DD €)= o8 (6] 62 (Ot
e R CT AN S PRSI
v - 20 4Dt (© =0 (002, (O] ¥PE Nt

= Ay / y (N0, 4 (O = M, / T (SPV AR (SL RS
= A2, 6m(V),

where m € N. Let

y(GN) = qum Y, 2, (€),

o= [ HOU (O + / FOU2 (ol

wo
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where m € N. Since y((, A) satisfies the equation

De.qy(C, A) + (v (0) = A y(C, A) = f(0),

1

Thus, we get
m(N) = 5 alm_A (m,neN, — >d),
and
y(C) )_< #(Cv'v )7f(')>n_m:1m'

Hence

S m, & (€)

(R4 (¢ 2 =mZ:1a3%q% = OO O

0

(3.13) = [ B 00 4 O} o, ()

(3.14) / Z
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PrOOF. Writing

O, 1, (<)
f(e) = 1
yields
(3.15) (G (€ N1 (V) = e
. gy e A b U = e )

due to the eigenfunctions 6, & (¢) are orthogonal. Combining 1) and
(3.10)), we see that

1
q7L

/ ‘G% Cag z ‘ dw,q§+/

wo d

i (C)|2 ; :/Z‘GA(C—? 2

2
e’ 1 —Z
m=1 m7q1n mq—n

do 1. (A).

By Lemma the integral on the left converges and the result is immediate.

O

It follows from Lemma 8 that the set{ 0 (M)} is bounded. Using Helly’s
theorems (|I5]), one can find a sequence {1/ q"k} such that 0 te (\) converges

to a monotone function p(A) (as ny — c0).

LEMMA 3.7. Let z be a nonreal number and ¢ be a fired number. Then we
have

* 0N’
1 <S.
(3.16) [ o < s
PROOF. For arbitrary n > 0, it follows from (3.14)) that
/?7 el M, (\) <8
nlz=A O ’

Letting n — co and n — oo, we get the desired result. O
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LEMMA 3.8. For arbitrary n > 0, we have

1 do(N) % dg(\)
/_oo FESTE / P e

PROOF. Let sin 8 # 0. Writing ¢ = 0 in (3.16)), we obtain

/°° do(N)
—00 ‘Z — )\‘2
Let sin 8 = 0. Then

1 D ) em,%(C)
7< QCG%((ﬂ'vz)vem,in('»n: e !

1 q
amz v

By (3.11]), we find

[ |Peceaconf dac+ [

1 —Z).

a,, 1 (A
m, g m,gm

2
q CG% (C7 Sy Z)‘ dw,qC

_/°° Dy, 8¢ N) [
. z—A

dg%(/\). 0

LEMMA 3.9. Let

(r1)62) = | T G(C 02 () g

wo

where f € H, and

(.o 2) Z((,2)0(s,2), ¢<¢, (#d, s#d,
z) =
" 0(C,2)2(5,2), <>C (#d ¢ #d.

Then, we have

d o
(RE)(C2)2 dur o + / (RANC.2) dugC

<1/d
<u/

[ dua+ [ [0 s
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where v = Im z.

Proor. Combining 1) and |D for each qin > d, n € N, we obtain

(R 1)(G.2)| g

/ijRqaf)(c,z)fdM - /d

2 — 2|2
m=1 m’q% p‘m,q% Z|
Lo L[ @) (|
= 2/ f (0‘ dw,q<+2/ ’f (c)‘ duw.qS
v wo v d
Letting n — oo, we get the desired result. O

THEOREM 3.10 (Integral Representation of the Resolvent). For every non-
real z and for each f € H, we obtain

e s o]

o A— 2

where
d o
FO) = [ £OO80C N6+ Jim [ 10PN

PROOF. Suppose that f(¢) = f,(C) satisfies (3.2)—(3.4) and vanishes out-
side the set [wo,d) U (d, o], where d < 0 < q%, n € N. Let

d o
Fy(\) = / FOOD (G, N duy € + /d FAOID(C, N du o

wo

By (3.13]), we see that

Ry t)(62) = [ SV m (e )
=[5m0+ [ SR ey, )

(317) + /OO G;C;);) FU()\)dQ#(/\) = Il + IQ +Ig.
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Firstly, we will estimate I;. From (3.13)), we deduce that

d o
_ 'q (1) 1) (2) (2)
S ai»(z—Ak,qm{wf” € I

92 1 (C) 1/2
k,om
< < E d 2)
AL 1 <faa a1 |R )‘k,—qln

X<Akz !

2
<ak%

d
[ 080, Ot [ 1202, (Ot

rqm

2>1 /2
Integrating twice by parts, we find

Rl O, (g + / IO, (€

wo

S — M d? ) w (1)
= )\k : /wo fcr (C) {quf ED 9 1 (C) (C)Q 1 (C)}dw,qc

L e {1 e 1Dy 0P @) }
o | PO (LD D (=00, (O f et

777,

1 d (1
T [ {zpsapear@ -0 o)

_ 1 71 . @) (2) }
Ak,;n/d {qD—z,qu,qfa (©) — (P (Q)

By Lemma we get

(€)dw o€

L
TL

(€)dws 4

e
n

K1/2
L <

d
/ {;Dz,;pw,qf;”(c) - v(()fé”(C)}G,%(C)dw,qé

2>1/2

L
'VZ

{20 1Dt P10 = o0 (O 02, (Ot
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Using Bessel inequality, we see that

1
-D

K1/2 o

I < /
a wo q
“
d

It is proved similarly that I3 < % Then I; and I3 tend to zero as a — o0,
uniformly in qin. It follows from the Helly selection theorem and 1} that

2
A 4C

9 1/2
C
dw,q<:| — g

Dy g fV() = v(Q)fV Q)

_w 1
a’q

1
-D

; Doy g f2(0) = v(Q) 2 (0)

_w 1
q’q

(318) (rin@a) = [ Dm0,

— 00

As is known, if f(-) € H, then we find a sequence {f,(s)}>_; that satisfies the
previous conditions and tends to f(¢) as ¢ — oo. From , the sequence
of Fourier transform converges to the transform of f({). Using Lemmas
and we can pass to the limit ¢ — oo in . Thus, we get the desired
result. ([l

REMARK 3.11. Using Theorem [3.10] we infer that

/ T (RIMe, 2)gM () du g6 + /dOO(Rf(Z’)(s2)9(2)(<)dw7q<
[ Eew

—de(N),

— 00
where

d o
F(\) = / POV (¢ N dug€ + lim /d FEOIP(C AN g

wi

and

d o
GA) = [ gD(QIV (¢ N g€ + Jim / 9P (¢, \) g

wo wo
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