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Eigenfunction Expansions of Impulsive Dynamic
Sturm-Liouville Problems

Bilender P. Allahverdiev', Hiiseyin Tuna?* and Hamlet A. Isayev®

ABSTRACT. This paper studies impulsive dynamic Sturm-Liouville
boundary value problems. The existence of a countably infinite set
of eigenvalues and eigenfunctions is proved and a uniformly conver-
gent expansion formula in the eigenfunctions is established.

1. INTRODUCTION

This paper deals with one-dimensional impulsive dynamic Sturm-
Liouville problems

([ =2V (O +a(Qy Q) =M (), ¢el(a,d)U(d,b),
y(a) — hiyY (a) =0,
(1.1) y(d—) =ny(d+),

yY (d=) = 3y¥ (d+),

y (b) + hay" (b) = 0.

Here T is a time scale, I} := [a,d), I3 := (d,b], —o00 < a < d < b < +00,
I:=15LUly,, I CT, \isa complex eigenvalue parameter, hy > 0, ho > 0,
1 > 0 and ¢ is a real-valued continuous function on I. We will show that
the boundary value problem (@) has a countably infinite set of eigenval-
ues and eigenfunctions. Moreover, a uniformly convergent eigenfunction
expansion is obtained for this problem. Eigenfunction expansions are
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intensively researched not only for solving partial differential equations
with the Fourier method, but also because they are important for spec-
tral theory (see [1, B, 4, 6-14]).

Guseinov [0] investigated the uniform convergence of eigenfunction
expansions for the Sturm-Liouville problem defined as

— V() =M (), CE€(aDb)
y(a) =y (b) =0,

on the time scale in 2007. Then Huseynov and Bairamov [[] obtained
similar results for the following problem

POV Q] 4Oy = (), CE€(ab),
y(a) — iyt (a) =0,
y (b) + hgy[A] (b) =0.

The difference in this work from the previous ones is that it deals with
the problem of impulsive boundary conditions.

2. MAIN RESULTS

Firstly, we assume that the reader is familiar with the basic facts of
time scales (see [b]). Now, we consider the following boundary value
problem (BVP)

(2.1) (Ly) (Q) = =y*Y (O +a(Qy(¢)
:)‘y(g)a C€e (a,d)U(d,b)
with the boundary conditions
y(a)_h‘ yV(a) :O>
(22) y )+ hay™ (5) = 0,

and impulsive conditions

(2.3) y(d—) = ny(d+),
(2.4) gV (d-) = ;yv (d+).

where T is the time scale, hy > 0, ha > 0,7 > 0, I; := [a,d), I := (d,b],
—o<a<d<b<4oo, [:=0LUI, I CT, Xisacomplex eigenvalue
parameter, ¢ is a real-valued continuous function on I, d € T is a regular
point for L, one-sided limits ¢ (d+) exist and are finite.

Let T be a time scale. The forward jump operator ¢ : T — T is
defined by

o(t)=inf{seT:s>t}, teT
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and the backward jump operator p : T — T is defined by
p(t)=sup{seT:s<t}, teT.

If o (t) > t, we say that ¢ is right scattered, while if p () < ¢, we say that
t is left scattered. Also, if t < supT and o (t) = ¢, then ¢ is called right
dense, and if ¢ > inf T and p (¢t) = ¢, then ¢ is called left-dense. Some
function f on T is said to be A-differentiable at some point ¢t € T if there
exists a number f2(t) such that for every £ > 0 there is a neighborhood
U C T of t such that

[f(o()) = f(s) = fRE)(a(t) = )] <elo(t) —s|, seU.
Analogously one may define the notion of V-differentiability of some
function using the backward jump p.

H=1I2(L)+L? (I2) is a Hilbert space endowed with the following
inner product

d _ b -
.= [ wLmAC+ /d SOLDAC,

where
w( :{ w(l)(<)> CGII
1/1(2)(07 C € 127
and "
_ w (C)a CE Il
o) _{ W@ (), ¢€l
Let
T:DCH— H, Ty=Ly, yeD,
where
( y € A-AC (I),
y® € V-AC (1),

y (d+) exist and are finite,
(a) = hyY (a) =0,
(b) + hay¥ (b) = 0,

Then, for y, z € D, we have

b b
(2.5) / LyzAC / YIZAC = [y, 2la- — [ o + b2 b — [, Zlas,

where

[y, 2lc = 9()=V(Q) = 2V (Qw(Q),  (C€T).
Theorem 2.1. The operator T is a positive self-adjoint in H.
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Proof. Let y, z € D. It follows from conditions (@)—(@) and (@) that
(2.6) (Ty,2) =y, Tz).

Since D is a dense subset in H, we see that T is a self-adjoint operator.
Let

(), cel
y@:{z@)&;, (e, YED

Then we conclude that

o= [ [- [0 @] +a @0 ©] i @IAC
+ /d b [— 122 0] + a9 <<>] ¥ (OAC
=[] s [Ce@r o ng

a
b

T@ac+ [[a 2 @ ac

d

/d [y(m(()}v

[ 6o v@act (e <c>\2 AC

[ > 0o @ @act [[a@ @] ac

V2 (p @)y (@) + [y (@) yD (a)]
VD2 (0 0)y® ()] + [y (d4+) v (d+)]

+ [0 act [a0p o ac

v [ of ack [a@ @ of ac

’2

_l’_

=h ’y(l)A (CL)‘2 + ha ‘y(Q)A (p (b))

d
/
a

[ of ack [0

w20 act (a0 @ ac

since hi,hy > 0 and ¢ (¢) > 0 for ¢ € I. O
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Let

[ dD(Q), ¢en
“(C)‘{ u?((), (el

and

1)

_ X (C)v C €h
0={ Y (en
be solutions of the problem

—[v* ] +4(Qy(Q) =0,

yd) =), o @)= o7 (),

satisfying
uV (@) = hy, uMVi(a)=1
X () = —hy, xOV () =1.

Corollary 2.2. Since T is the positive operator and positive operators
have positive eigenvalues, zero is not an eigenvalue of T .

Definition 2.3 ([5]). The A-Wronskian of the functions y and z is
defined by the formula

Wa (y, 2) == yz® — 2™,

Theorem 2.4. Let
(2.7)

__ 1 [uOx®), a<
G(G1) = WA(ujx){u(t)X(C), a<

Then G ((,t) is a A-Hilbert—Schmidt kernel, i.e.,

/ad/ad‘G(C,t)’QACAt<oo, /db/dbG(C,t)l2A<At<oo_

Proof. By (@), we deduce that

/adAC/ad\G(C,t)\zAt<oo, /dbAgfdbfG(C,t)\zAt<oo

since u (.) x (.) € H x H. Then, we find

d d
(2.8) / / G (¢, 1) ACAE < oo,

b b
/ / |G(C,t)|PACAL < . 0
d Jd

¢
t

I~
ININ
T
I
RIS

<
<
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Theorem 2.5 ([10]). Let A be an operator defined as

A{G} = A{wil},
where i € N:={1,2,3,...} and

o0
(2.9) yi=Y_ airCe.
k=1
If
o
(2.10) > ai)? < oo
ik=1

then A is compact in 2.

Theorem 2.6. Let K : H — H be an operator defined as

(2.11) (KF) () = {f Em gi[( ;

where

f(C):{ f(2)(C), y € H.

Then K is a compact operator.

Proof. Let {¢;} be a complete, orthonormal basis of H, where

1eN>

e, ¢celaa),
Pi= o) {asi-”(c), ¢ e (d,b).

Define
= (f, ¢i)
/ 506D (Q)AC + / 12 (0) 6 (A,
and
yi = (9, di)
d b -
- / gV () oM (OAC + /d 4 () o (Q)AC,
also
azk—/ / G (¢, 1) 6 (e (HACAL

//G ¢, 6@ (6P ()ACAL, ik eN.
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Thus, H is mapped isometrically [?. K transforms into A in [2. By
Theorem 2.5, we conclude that A is compact. Hence, K is compact. [

Since K = T~!, the completeness of the system of all eigenfunctions of
T is equivalent to the completeness of the system of all eigenfunctions of
K. From the Hilbert-Schmidt theorem, we obtain the following theorem.

Theorem 2.7. For the BVP @)—@), there exists an orthonormal
basis {1 }ey in H. For f € H, we get
(2.12) Q)= et (Q),
k=1
where

= (fvr), keN

Thus, we have
2

d | r(1) _ X 1)
Jo |FP Q) = X ety Q)] AC
(2.13) Nhgl ’ﬂjé 9 =0,
+ 2@ (¢) - > atl) ()] AC

Moreover, it follows from ) that
d 2 b 2 >
(2.14) SO ACH [ FPQ) AC=D el
[ ace [l -3

The main result of the article is the following theorem.

Theorem 2.8. Let f,fY : I — R be continuous functions on I, one-
sided limits f (d+), fV (d+) exist and are finite and satisfying (@)—
). Then the series

(2.15) FQO = eartn (),
k=1

where
Ck:<f7wk>7 kEN,

converges uniformly to f on I.

Proof. Let
(2.16) S(y) =M ‘y(lm (a)r o ‘y(2)A (» (b))‘z
+/d y(l)A (C)‘2A<+/dq(0 ‘y(l) (C)’QAC
o 2 " )
+ J ‘y@)A (O‘ AC+/d Q(C)‘y@) (C)‘ AC,
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and S(y) > 0. If we take
N
y=7F0© =Y etk (Q)
k=1

in (), we deduce that

N
S (f (©) =D crthr <<>)
k=1

d N

+ / (f(”A ©) = au® <<>> A¢
a k=1
b N 2

+ / (f‘m ©) =Y au® <c>) AC
d k=1

N —hi fO2 (@) % (a)
Ck
1

—ha f@2 (p (1)) 7 (b)

N ~h) (a) ¥ ()
Y |
km=1 —hat % (B) Ui (0)

d d
+ / (FO (O)2AC + / 0 () F M2 (¢) AC

a

b b
+ /d (F22 (O)2AC + / 2(0) 122 (¢) AC

d
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—Qch [/ f(l)A A§+/ f2)A w )A(C)AC
f <<>w;> (€) AC
-2
; +fd 2 (¢) ' (¢) A
N DA
SR (v (0 A¢
+ m | O
k%;l'“ +f£¢§f” 24 (¢) A
N
e Qv () A¢ ]
+ ™
kmzlk 12000 (v (0) AC

Applications of (@)—(@) and integration by parts yield
d
/ p(A @A+ [ OO v (© A

b
/ B2 (¢) FOB () AC + /d 0(0) £ () () AC

WA( (d*))f( (d=) — 7% (a) Y (a)
+ o ((b))f (b) — NA( >f<2><d+>

/f (1)A AC /f (2)A > A
4 / 2(O) 1D (Qw (©) AC + /d <<>f<2><<>w<2 (€) AC
= OV @)Y (1) = OV (@) 90" (o)

d
+ / ) [— oy <<>)V+q<c>¢,§” <c>] A¢

b
[0 |- (42©0) +a@ o 0] Ac
= —hafOV )PV () — b fOY (@) 9" (0) + e

d b
/ B0 (A (0) AC + /d P23 () @3 (¢) A

d b
+ / 2O (O () A¢ + /d 2 (w2 () AC
= D2 (p(d=)) ) (d=) + D2 (p (1) B (b)
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—wmA<) V(@) — 0@ (d+) v (d+

(s [ (w2 (¢ ) Q) ¥h (¢ ] A
6@ (¢ [ (422 ) (©) v (¢ ] A
<> DV () =i (@) Y (a)

Iy [ / 50 (D () AC + / 42 ()@ <<>A<}
a d
— PV (0) DY (6) — b (VY (@) OV (@) + AkBrm,

where
P 1, if k =m,
km=300, if k £ m.

Therefore, we obtain
( Zcm )—m (708 @]+ ha [122 0 01)]
d d
+ / (PO ()2 A¢ + / ¢(0) FD2 (¢) AC
- (2)A [ 1\2 o (2)2
+/d(f ©) A<+/d 2(0) 1?2 (¢) AC
N
_Z/\kc%'
k=1
Moreover, we find
21 Y < [0 @) ke [108 (o0)]
k=1
d d
+ / (FD2 ()2A¢ + / 2(0) F12 () A

b b
+ /d (F@ (O)2AC + /d 2(0) 122 (¢) AC.

since S is nonnegative for all N. Thus, the convergence of the series

o0
> e
k=1

follows.
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Now, we shall prove that the series

(2.18) > lerr (0)
k=1

is uniformly convergent on I. Since T¥r = A\x¥r, k € N, we obtain

Ve (Q) = M (T k) (O) = MG (¢, t)  Yw), kEN.
If we rewrite the series (), we see that

(2.19) D lewtbk (O =D M ler T (€)
k=1 k=1

where

T (¢) = (G (¢,t),Yn), keN.

This can be regarded as the Fourier coefficients of G ({, ) as a function
of t. It follows from (@) that

SN < i [GV2 ()] 4 ne [6P2 ()]
k=1

d
l/@“(u»m+/qwdmmwm
+ /d b(G@)A (¢, 1)2At + / ’ q (1) GP2 (¢, 1) At.

a

Since all the functions appearing under the integral sign are bounded,

we infer that -
Z MY <C
k=1

where C' is a constant. Applying the Cauchy—Schwartz inequality to
(‘2.1§), we obtain

n+m n+m n+m
(2.20) Z )\k \cka Z )\kck Z )\sz

n+m

<vC Z )\kc,%.
k=n
From () and (), the series (R.1§) is uniformly convergent on I.

Since
oo e, 9]
> artr (O <) lewthr (¢
k=1 k=1
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the series () is also uniformly convergent on I.
Let

(2.21) Q=D an ().
k=1

Then, for k£ € N, we obtain

d b
/ M () AC+ /d 1D (O () AC =

due to the series () is uniformly convergent on I. Therefore, the
Fourier coefficients of f and f; are the same. From (R.14), we find
f— f1 =0, since the Fourier coefficients of f — fi are zero. This finishes
the proof. O
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