# **Eigenfunction Expansions of Impulsive Dynamic Sturm- Liouville Problems**

Bilender P. Allahverdiev, Hüseyin Tuna and Hamlet A. Isayev

## Sahand Communications in Mathematical Analysis

Print ISSN: 2322-5807 Online ISSN: 2423-3900

Volume: 21 Number: 4 Pages: 123-135

Sahand Commun. Math. Anal.

DOI: 10.22130/scma.2024.2015609.1532

Volume 21, No. 4, October 2024

Print ISSN 2322-5807
Online ISSN 2423-3900

Sahand Communications
in
Mathematical Analysis



SCMA, P. O. Box 55181-83111, Maragheh, Iran http://scma.maragheh.ac.ir

 $DOI:\,10.22130/scma.2024.2015609.1532$ 

### Eigenfunction Expansions of Impulsive Dynamic Sturm-Liouville Problems

Bilender P. Allahverdiev<sup>1</sup>, Hüseyin Tuna<sup>2\*</sup> and Hamlet A. Isayev<sup>3</sup>

ABSTRACT. This paper studies impulsive dynamic Sturm-Liouville boundary value problems. The existence of a countably infinite set of eigenvalues and eigenfunctions is proved and a uniformly convergent expansion formula in the eigenfunctions is established.

#### 1. Introduction

This paper deals with one-dimensional impulsive dynamic Sturm-Liouville problems

Clouville problems 
$$\begin{cases} -y^{\Delta\nabla}(\zeta) + q(\zeta)y(\zeta) = \lambda y(\zeta), & \zeta \in (a,d) \cup (d,b), \\ y(a) - h_1 y^{\nabla}(a) = 0, \\ y(d-) = \eta y(d+), \\ y^{\nabla}(d-) = \frac{1}{\eta} y^{\nabla}(d+), \\ y(b) + h_2 y^{\nabla}(b) = 0. \end{cases}$$

Here  $\mathbb{T}$  is a time scale,  $I_1 := [a,d)$ ,  $I_2 := (d,b]$ ,  $-\infty < a < d < b < +\infty$ ,  $I := I_1 \cup I_2$ ,  $I \subset \mathbb{T}$ ,  $\lambda$  is a complex eigenvalue parameter,  $h_1 > 0$ ,  $h_2 > 0$ ,  $\eta > 0$  and q is a real-valued continuous function on I. We will show that the boundary value problem (1.1) has a countably infinite set of eigenvalues and eigenfunctions. Moreover, a uniformly convergent eigenfunction expansion is obtained for this problem. Eigenfunction expansions are

 $<sup>2020\</sup> Mathematics\ Subject\ Classification.\ 34 N05,\ 34 L10.$ 

Key words and phrases. Dynamic equations on time scales, Completeness of eigenfunctions, Eigenfunction expansions.

Received: 13 November 2023, Accepted: 08 April 2024.

<sup>\*</sup> Corresponding author.

intensively researched not only for solving partial differential equations with the Fourier method, but also because they are important for spectral theory (see [1, 3, 4, 6-14]).

Guseinov [6] investigated the uniform convergence of eigenfunction expansions for the Sturm-Liouville problem defined as

$$-y^{\Delta\nabla}(\zeta) = \lambda y(\zeta), \quad \zeta \in (a, b)$$
$$y(a) = y(b) = 0,$$

on the time scale in 2007. Then Huseynov and Bairamov [7] obtained similar results for the following problem

$$-\left[p\left(\zeta\right)y^{\Delta}\left(\zeta\right)\right]^{\nabla}+q\left(\zeta\right)y\left(\zeta\right)=\lambda y\left(\zeta\right),\quad\zeta\in(a,b),$$

$$y\left(a\right)-h_{1}y^{\left[\Delta\right]}\left(a\right)=0,$$

$$y\left(b\right)+h_{2}y^{\left[\Delta\right]}\left(b\right)=0.$$

The difference in this work from the previous ones is that it deals with the problem of impulsive boundary conditions.

#### 2. Main Results

Firstly, we assume that the reader is familiar with the basic facts of time scales (see [5]). Now, we consider the following boundary value problem (BVP)

(2.1) 
$$(Ly)(\zeta) := -y^{\Delta \nabla}(\zeta) + q(\zeta)y(\zeta)$$
$$= \lambda y(\zeta), \quad \zeta \in (a,d) \cup (d,b)$$

with the boundary conditions

(2.2) 
$$y(a) - h_1 y^{\nabla}(a) = 0, y(b) + h_2 y^{\nabla}(b) = 0,$$

and impulsive conditions

$$(2.3) y(d-) = \eta y(d+),$$

$$(2.4) y^{\nabla}(d-) = \frac{1}{\eta} y^{\nabla}(d+),$$

where  $\mathbb{T}$  is the time scale,  $h_1 > 0$ ,  $h_2 > 0$ ,  $\eta > 0$ ,  $I_1 := [a, d)$ ,  $I_2 := (d, b]$ ,  $-\infty < a < d < b < +\infty$ ,  $I := I_1 \cup I_2$ ,  $I \subset \mathbb{T}$ ,  $\lambda$  is a complex eigenvalue parameter, q is a real-valued continuous function on I,  $d \in \mathbb{T}$  is a regular point for L, one-sided limits  $q(d\pm)$  exist and are finite.

Let  $\mathbb T$  be a time scale. The forward jump operator  $\sigma:\mathbb T\to\mathbb T$  is defined by

$$\sigma(t) = \inf \{ s \in \mathbb{T} : s > t \}, \quad t \in \mathbb{T}$$

and the backward jump operator  $\rho: \mathbb{T} \to \mathbb{T}$  is defined by

$$\rho(t) = \sup \{ s \in \mathbb{T} : s < t \}, \quad t \in \mathbb{T}.$$

If  $\sigma(t) > t$ , we say that t is right scattered, while if  $\rho(t) < t$ , we say that t is left scattered. Also, if  $t < \sup \mathbb{T}$  and  $\sigma(t) = t$ , then t is called right dense, and if  $t > \inf \mathbb{T}$  and  $\rho(t) = t$ , then t is called left-dense. Some function f on  $\mathbb{T}$  is said to be  $\Delta$ -differentiable at some point  $t \in \mathbb{T}$  if there exists a number  $f^{\Delta}(t)$  such that for every  $\varepsilon > 0$  there is a neighborhood  $U \subset \mathbb{T}$  of t such that

$$|f(\sigma(t)) - f(s) - f^{\Delta}(t)(\sigma(t) - s)| \le \varepsilon |\sigma(t) - s|, \quad s \in U.$$

Analogously one may define the notion of  $\nabla$ -differentiability of some function using the backward jump  $\rho$ .

 $H=L^{2}\left(I_{1}\right)+L^{2}\left(I_{2}\right)$  is a Hilbert space endowed with the following inner product

$$\langle \psi, \omega \rangle := \int_a^d \psi^{(1)} \overline{\omega^{(1)}} \Delta \zeta + \int_d^b \psi^{(2)} \overline{\omega^{(2)}} \Delta \zeta,$$

where

$$\psi(\zeta) = \begin{cases} \psi^{(1)}(\zeta), & \zeta \in I_1 \\ \psi^{(2)}(\zeta), & \zeta \in I_2, \end{cases}$$

and

$$\omega(\zeta) = \begin{cases} \omega^{(1)}(\zeta), & \zeta \in I_1 \\ \omega^{(2)}(\zeta), & \zeta \in I_2. \end{cases}$$

Let

$$\mathcal{T}: \mathcal{D} \subset H \to H, \qquad \mathcal{T}y = Ly, \quad y \in \mathcal{D},$$

where

$$\mathcal{D} = \left\{ \begin{aligned} & y \in \Delta \text{-}AC\left(I\right), \\ & y^{\Delta} \in \nabla \text{-}AC\left(I\right), \\ & y\left(d\pm\right) \text{ exist and are finite,} \\ & y\left(a\right) - h_{1}y^{\nabla}\left(a\right) = 0, \\ & y\left(b\right) + h_{2}y^{\nabla}\left(b\right) = 0, \\ & y\left(d-\right) = \eta y\left(d+\right), \\ & y^{\nabla}\left(d-\right) = \frac{1}{\eta}y^{\nabla}\left(d+\right) \\ & Ly \in H \end{aligned} \right\}.$$

Then, for  $y, z \in \mathcal{D}$ , we have

(2.5) 
$$\int_{a}^{b} Ly\overline{z}\Delta\zeta - \int_{a}^{b} y\overline{Lz}\Delta\zeta = [y,z]_{d-} - [y,z]_{a} + [y,z]_{b} - [y,z]_{d+},$$

where

$$[y,z]_{\zeta} = y(\zeta)z^{\nabla}(\zeta) - z^{\nabla}(\zeta)y(\zeta), \quad (\zeta \in I).$$

**Theorem 2.1.** The operator  $\mathcal{T}$  is a positive self-adjoint in H.

*Proof.* Let  $y, z \in \mathcal{D}$ . It follows from conditions (2.2)-(2.4) and (2.5) that

$$\langle \mathcal{T}y, z \rangle = \langle y, \mathcal{T}z \rangle.$$

Since  $\mathcal{D}$  is a dense subset in H, we see that  $\mathcal{T}$  is a self-adjoint operator. Let

$$y(\zeta) = \begin{cases} y^{(1)}(\zeta), & \zeta \in I_1 \\ y^{(2)}(\zeta), & \zeta \in I_2, \end{cases} \quad y \in \mathcal{D}.$$

Then we conclude that

$$\begin{split} \langle \mathcal{T}y,y\rangle &= \int_{a}^{d} \left[ -\left[y^{(1)\Delta}\left(\zeta\right)\right]^{\nabla} + q\left(\zeta\right)y^{(1)}\left(\zeta\right)\right] \overline{y^{(1)}\left(\zeta\right)}\Delta\zeta \\ &+ \int_{d}^{b} \left[ -\left[y^{(2)\Delta}\left(\zeta\right)\right]^{\nabla} + q\left(\zeta\right)y^{(2)}\left(\zeta\right)\right] \overline{y^{(2)}\left(\zeta\right)}\Delta\zeta \\ &= \int_{a}^{d} -\left[y^{(1)\Delta}\left(\zeta\right)\right]^{\nabla} \overline{y^{(1)}\left(\zeta\right)}\Delta\zeta + \int_{a}^{d} q\left(\zeta\right)\left|y^{(1)}\left(\zeta\right)\right|^{2}\Delta\zeta \\ &+ \int_{d}^{b} -\left[y^{(2)\Delta}\left(\zeta\right)\right]^{\nabla} \overline{y^{(2)}\left(\zeta\right)}\Delta\zeta + \int_{d}^{b} q\left(\zeta\right)\left|y^{(2)}\left(\zeta\right)\right|^{2}\Delta\zeta \\ &= -\int_{a}^{d} \left[y^{(1)\Delta}\left(\rho\left(\zeta\right)\right)\right]^{\Delta} \overline{y^{(2)}\left(\zeta\right)}\Delta\zeta + \int_{d}^{d} q\left(\zeta\right)\left|y^{(1)}\left(\zeta\right)\right|^{2}\Delta\zeta \\ &- \int_{d}^{b} \left[y^{(2)\Delta}\left(\rho\left(\zeta\right)\right)\right]^{\Delta} \overline{y^{(2)}\left(\zeta\right)}\Delta\zeta + \int_{d}^{b} q\left(\zeta\right)\left|y^{(2)}\left(\zeta\right)\right|^{2}\Delta\zeta \\ &= -\left[y^{(1)\Delta}\left(\rho\left(d-\right)\right)\overline{y^{(1)}\left(d-\right)}\right] + \left[y^{(1)\Delta}\left(a\right)\overline{y^{(1)}\left(a\right)}\right] \\ &- \left[y^{(2)\Delta}\left(\rho\left(b\right)\right)\overline{y^{(2)}\left(b\right)}\right] + \left[y^{(2)\Delta}\left(d+\right)\overline{y^{(2)}\left(d+\right)}\right] \\ &+ \int_{a}^{d} \left|y^{(1)\Delta}\left(\zeta\right)\right|^{2}\Delta\zeta + \int_{a}^{d} q\left(\zeta\right)\left|y^{(1)}\left(\zeta\right)\right|^{2}\Delta\zeta \\ &+ \int_{d}^{b} \left|y^{(2)\Delta}\left(\zeta\right)\right|^{2}\Delta\zeta + \int_{d}^{d} q\left(\zeta\right)\left|y^{(2)}\left(\zeta\right)\right|^{2}\Delta\zeta \\ &= h_{1}\left|y^{(1)\Delta}\left(a\right)\right|^{2} + h_{2}\left|y^{(2)\Delta}\left(\rho\left(b\right)\right)\right|^{2} \\ &+ \int_{d}^{d} \left|y^{(1)\Delta}\left(\zeta\right)\right|^{2}\Delta\zeta + \int_{d}^{d} q\left(\zeta\right)\left|y^{(1)}\left(\zeta\right)\right|^{2}\Delta\zeta \\ &+ \int_{d}^{d} \left|y^{(1)\Delta}\left(\zeta\right)\right|^{2}\Delta\zeta + \int_{d}^{d} q\left(\zeta\right)\left|y^{(2)}\left(\zeta\right)\right|^{2}\Delta\zeta \\ &+ \int_{d}^{d} \left|y^{(2)\Delta}\left(\zeta\right)\right|^{2}\Delta\zeta + \int_{d}^{d} q\left(\zeta\right)\left|y^{(2)}\left(\zeta\right)\right|^{2}\Delta\zeta \\ &> 0 \end{split}$$

since  $h_1, h_2 > 0$  and  $q(\zeta) \ge 0$  for  $\zeta \in I$ .

Let

$$u(\zeta) = \begin{cases} u^{(1)}(\zeta), & \zeta \in I_1 \\ u^{(2)}(\zeta), & \zeta \in I_2 \end{cases}$$

and

$$\chi(\zeta) = \begin{cases} \chi^{(1)}(\zeta), & \zeta \in I_1 \\ \chi^{(2)}(\zeta), & \zeta \in I_2 \end{cases}$$

be solutions of the problem

$$-\left[y^{\Delta}\left(\zeta\right)\right]^{\nabla} + q\left(\zeta\right)y\left(\zeta\right) = 0,$$

$$y\left(d-\right) = \eta y\left(d+\right), \qquad y^{\nabla}\left(d-\right) = \frac{1}{\eta}y^{\nabla}\left(d+\right),$$

satisfying

$$u^{(1)}(a) = h_1, \quad u^{(1)\nabla}(a) = 1,$$
  
 $\chi^{(2)}(b) = -h_2, \quad \chi^{(2)\nabla}(b) = 1.$ 

Corollary 2.2. Since  $\mathcal{T}$  is the positive operator and positive operators have positive eigenvalues, zero is not an eigenvalue of  $\mathcal{T}$ .

**Definition 2.3** ([5]). The  $\Delta$ -Wronskian of the functions y and z is defined by the formula

$$W_{\Delta}(y,z) := yz^{\Delta} - zy^{\Delta}.$$

Theorem 2.4. Let

(2.7)

$$G\left(\zeta,t\right) = -\frac{1}{W_{\Delta}\left(u,\chi\right)} \left\{ \begin{array}{l} u\left(\zeta\right)\chi\left(t\right), & a \leq \zeta \leq t \leq b, \ \zeta \neq d, \ t \neq d, \\ u\left(t\right)\chi\left(\zeta\right), & a \leq t \leq \zeta \leq b, \ \zeta \neq d, \ t \neq d. \end{array} \right.$$

Then  $G(\zeta,t)$  is a  $\Delta$ -Hilbert-Schmidt kernel, i.e.,

$$\int_{a}^{d} \int_{a}^{d} |G(\zeta, t)|^{2} \Delta \zeta \Delta t < \infty, \qquad \int_{d}^{b} \int_{d}^{b} |G(\zeta, t)|^{2} \Delta \zeta \Delta t < \infty.$$

*Proof.* By (2.7), we deduce that

$$\int_{a}^{d} \Delta \zeta \int_{a}^{d} |G(\zeta, t)|^{2} \Delta t < \infty, \qquad \int_{d}^{b} \Delta \zeta \int_{d}^{b} |G(\zeta, t)|^{2} \Delta t < \infty$$

since  $u(.) \chi(.) \in H \times H$ . Then, we find

(2.8) 
$$\int_{a}^{d} \int_{a}^{d} |G(\zeta, t)|^{2} \Delta \zeta \Delta t < \infty,$$
$$\int_{d}^{b} \int_{d}^{b} |G(\zeta, t)|^{2} \Delta \zeta \Delta t < \infty.$$

**Theorem 2.5** ([10]). Let A be an operator defined as

$$A\{\zeta_i\} = \{y_i\},\,$$

where  $i \in \mathbb{N} := \{1, 2, 3, ...\}$  and

$$(2.9) y_i = \sum_{k=1}^{\infty} a_{ik} \zeta_k.$$

If

$$(2.10) \qquad \qquad \sum_{i,k=1}^{\infty} |a_{ik}|^2 < \infty$$

then A is compact in  $l^2$ .

**Theorem 2.6.** Let  $K: H \to H$  be an operator defined as

(2.11) 
$$(Kf)(\zeta) = \begin{cases} \int_a^d G(\zeta, \gamma) f^{(1)}(\gamma) \Delta \gamma, & \zeta \in [a, d), \\ \int_d^b G(\zeta, \gamma) f^{(2)}(\gamma) \Delta \gamma, & \zeta \in (d, b], \end{cases}$$

where

$$f(\zeta) = \begin{cases} f^{(1)}(\zeta), & \zeta \in [a, d), \\ f^{(2)}(\zeta), & \zeta \in (d, b], \end{cases} \quad y \in H.$$

Then K is a compact operator.

*Proof.* Let  $\{\phi_i\}_{i\in\mathbb{N}}$ , be a complete, orthonormal basis of H, where

$$\phi_{i} = \phi_{i}(\zeta) = \begin{cases} \phi_{i}^{(1)}(\zeta), & \zeta \in [a, d), \\ \phi_{i}^{(2)}(\zeta), & \zeta \in (d, b]. \end{cases}$$

Define

$$\zeta_{i} = \langle f, \phi_{i} \rangle$$

$$= \int_{a}^{d} f^{(1)}(\zeta) \overline{\phi_{i}^{(1)}(\zeta)} \Delta \zeta + \int_{d}^{b} f^{(2)}(\zeta) \overline{\phi_{i}^{(2)}(\zeta)} \Delta \zeta,$$

and

$$y_{i} = \langle g, \phi_{i} \rangle$$

$$= \int_{a}^{d} g^{(1)}(\zeta) \overline{\phi_{i}^{(1)}(\zeta)} \Delta \zeta + \int_{d}^{b} g^{(2)}(\zeta) \overline{\phi_{i}^{(2)}(\zeta)} \Delta \zeta,$$

also

$$a_{ik} = \int_{a}^{d} \int_{a}^{d} G\left(\zeta, t\right) \overline{\phi_{i}^{(1)}\left(\zeta\right) \phi_{k}^{(1)}\left(t\right)} \Delta \zeta \Delta t$$
$$+ \int_{d}^{b} \int_{d}^{b} G\left(\zeta, t\right) \overline{\phi_{i}^{(2)}\left(\zeta\right) \phi_{k}^{(2)}\left(t\right)} \Delta \zeta \Delta t, \quad i, k \in \mathbb{N}.$$

Thus, H is mapped isometrically  $l^2$ . K transforms into A in  $l^2$ . By Theorem 2.5, we conclude that A is compact. Hence, K is compact.  $\square$ 

Since  $K = \mathcal{T}^{-1}$ , the completeness of the system of all eigenfunctions of  $\mathcal{T}$  is equivalent to the completeness of the system of all eigenfunctions of K. From the Hilbert-Schmidt theorem, we obtain the following theorem.

**Theorem 2.7.** For the BVP (2.1)-(2.4), there exists an orthonormal basis  $\{\psi_k\}_{k\in\mathbb{N}}$  in H. For  $f\in H$ , we get

(2.12) 
$$f(\zeta) = \sum_{k=1}^{\infty} c_k \psi_k(\zeta),$$

where

$$c_k = \langle f, \psi_k \rangle, \quad k \in \mathbb{N}.$$

Thus, we have

(2.13) 
$$\lim_{N \to \infty} \left\{ \int_{a}^{d} \left| f^{(1)}(\zeta) - \sum_{k=1}^{N} c_{k} \psi_{k}^{(1)}(\zeta) \right|^{2} \Delta \zeta + \int_{d}^{b} \left| f^{(2)}(\zeta) - \sum_{k=1}^{N} c_{k} \psi_{k}^{(2)}(\zeta) \right|^{2} \Delta \zeta \right\} = 0,$$

Moreover, it follows from (2.13) that

(2.14) 
$$\int_{a}^{d} \left| f^{(1)}(\zeta) \right|^{2} \Delta \zeta + \int_{d}^{b} \left| f^{(2)}(\zeta) \right|^{2} \Delta \zeta = \sum_{k=1}^{\infty} |c_{k}|^{2}.$$

The main result of the article is the following theorem.

**Theorem 2.8.** Let  $f, f^{\nabla}: I \to \mathbb{R}$  be continuous functions on I, one-sided limits  $f(d\pm), f^{\nabla}(d\pm)$  exist and are finite and satisfying (2.2)-(2.4). Then the series

(2.15) 
$$f(\zeta) = \sum_{k=1}^{\infty} c_k \psi_k(\zeta),$$

where

$$c_k = \langle f, \psi_k \rangle, \quad k \in \mathbb{N},$$

converges uniformly to f on I.

*Proof.* Let

(2.16) 
$$S(y) := h_1 \left| y^{(1)\Delta}(a) \right|^2 + h_2 \left| y^{(2)\Delta}(\rho(b)) \right|^2 + \int_a^d \left| y^{(1)\Delta}(\zeta) \right|^2 \Delta \zeta + \int_a^d q(\zeta) \left| y^{(1)}(\zeta) \right|^2 \Delta \zeta + \int_d^b \left| y^{(2)\Delta}(\zeta) \right|^2 \Delta \zeta + \int_d^b q(\zeta) \left| y^{(2)}(\zeta) \right|^2 \Delta \zeta,$$

and  $S(y) \geq 0$ . If we take

$$y = f(\zeta) - \sum_{k=1}^{N} c_k \psi_k(\zeta)$$

in (2.16), we deduce that

$$S\left(f(\zeta) - \sum_{k=1}^{N} c_{k} \psi_{k}(\zeta)\right)$$

$$= h_{1} \left[f^{(1)\Delta}(a) - \sum_{k=1}^{N} c_{k} \psi_{k}^{(1)\Delta}(a)\right]^{2} + h_{2}$$

$$\times \left[f^{(2)\Delta}(\rho(b)) - \sum_{k=1}^{N} c_{k} \left(\psi_{k}^{(2)\Delta}(b)\right)\right]^{2}$$

$$+ \int_{a}^{d} \left(f^{(1)\Delta}(\zeta) - \sum_{k=1}^{N} c_{k} \psi_{k}^{(1)\Delta}(\zeta)\right)^{2} \Delta \zeta$$

$$+ \int_{d}^{b} q(\zeta) \left(f^{(1)}(\zeta) - \sum_{k=1}^{N} c_{k} \psi_{k}^{(2)\Delta}(\zeta)\right)^{2} \Delta \zeta$$

$$+ \int_{d}^{b} q(\zeta) \left(f^{(2)}(\zeta) - \sum_{k=1}^{N} c_{k} \psi_{k}^{(2)}(\zeta)\right)^{2} \Delta \zeta$$

$$+ \int_{d}^{b} q(\zeta) \left(f^{(2)}(\zeta) - \sum_{k=1}^{N} c_{k} \psi_{k}^{(2)}(\zeta)\right)^{2} \Delta \zeta$$

$$= h_{1} \left[f^{(1)\Delta}(a)\right]^{2} + h_{2} \left[f^{(2)\Delta}(\rho(b))\right]^{2}$$

$$- 2 \sum_{k=1}^{N} c_{k} \left[-h_{1} f^{(1)\Delta}(a) \psi_{k}^{(1)\Delta}(a) - h_{2} f^{(2)\Delta}(\rho(b)) \psi_{k}^{(2)\Delta}(b)\right]$$

$$- \sum_{k,m=1}^{N} c_{k} c_{m} \left[-h_{1} \psi_{k}^{(1)\Delta}(a) \psi_{m}^{(1)\Delta}(a) - h_{2} \psi_{k}^{(2)\Delta}(b) \psi_{m}^{(2)\Delta}(b)\right]$$

$$+ \int_{a}^{d} (f^{(1)\Delta}(\zeta))^{2} \Delta \zeta + \int_{d}^{d} q(\zeta) f^{(1)2}(\zeta) \Delta \zeta$$

$$+ \int_{d}^{b} (f^{(2)\Delta}(\zeta))^{2} \Delta \zeta + \int_{d}^{d} q(\zeta) f^{(2)2}(\zeta) \Delta \zeta$$

$$-2\sum_{k=1}^{N}c_{k}\left[\int_{a}^{d}f^{(1)\Delta}(\zeta)\psi_{k}^{(1)\Delta}(\zeta)\Delta\zeta + \int_{d}^{b}f^{(2)\Delta}(\zeta)\psi_{k}^{(2)\Delta}(\zeta)\Delta\zeta\right]$$

$$-2\sum_{k=1}^{N}c_{k}\left[\int_{a}^{d}q(\zeta)f^{(1)}(\zeta)\psi_{k}^{(1)}(\zeta)\Delta\zeta + \int_{d}^{b}q(\zeta)f^{(2)}(\zeta)\psi_{k}^{(2)}(\zeta)\Delta\zeta\right]$$

$$+\sum_{k,m=1}^{N}c_{k}c_{m}\left[\int_{a}^{d}\psi_{k}^{(1)\Delta}(\zeta)\psi_{m}^{(1)\Delta}(\zeta)\Delta\zeta + \int_{d}^{b}\psi_{k}^{(2)\Delta}(\zeta)\psi_{m}^{(2)\Delta}(\zeta)\Delta\zeta\right]$$

$$+\sum_{k,m=1}^{N}c_{k}c_{m}\left[\int_{a}^{d}q(\zeta)\psi_{k}^{(1)}(\zeta)\psi_{m}^{(1)}(\zeta)\Delta\zeta + \int_{d}^{b}q(\zeta)\psi_{k}^{(2)}(\zeta)\psi_{m}^{(2)}(\zeta)\Delta\zeta\right].$$

Applications of (2.2)-(2.4) and integration by parts yield

$$\begin{split} & \int_{a}^{a} \psi_{k}^{(1)\Delta}\left(\zeta\right) f^{(1)\Delta}\left(\zeta\right) \Delta \zeta + \int_{a}^{a} q\left(\zeta\right) f^{(1)}\left(\zeta\right) \psi_{k}^{(1)}\left(\zeta\right) \Delta \zeta \\ & + \int_{d}^{b} \psi_{k}^{(2)\Delta}\left(\zeta\right) f^{(2)\Delta}\left(\zeta\right) \Delta \zeta + \int_{d}^{b} q\left(\zeta\right) f^{(2)}\left(\zeta\right) \psi_{k}^{(2)}\left(\zeta\right) \Delta \zeta \\ & = \psi_{k}^{(1)\Delta}\left(\rho\left(d-\right)\right) f^{(1)}\left(d-\right) - \psi_{k}^{(1)\Delta}\left(a\right) f^{(1)}\left(a\right) \\ & + \psi_{k}^{(2)\Delta}\left(\rho\left(b\right)\right) f^{(2)}\left(b\right) - \psi_{k}^{(2)\Delta}\left(d+\right) f^{(2)}\left(d+\right) \\ & - \int_{a}^{d} f^{(1)}\left(\zeta\right) \left(\psi_{k}^{(1)\Delta}\left(\zeta\right)\right)^{\nabla} \Delta \zeta - \int_{d}^{b} f^{(2)}\left(\zeta\right) \left(\psi_{k}^{(2)\Delta}\left(\zeta\right)\right)^{\nabla} \Delta \zeta \\ & + \int_{a}^{d} q\left(\zeta\right) f^{(1)}\left(\zeta\right) \psi_{k}^{(1)}\left(\zeta\right) \Delta \zeta + \int_{d}^{b} q\left(\zeta\right) f^{(2)}\left(\zeta\right) \psi_{k}^{(2)}\left(\zeta\right) \Delta \zeta \\ & = -h_{2} f^{(2)\nabla}\left(b\right) \psi_{k}^{(2)\nabla}\left(b\right) - h_{1} f^{(1)\nabla}\left(a\right) \psi_{k}^{(1)\Delta}\left(a\right) \\ & + \int_{a}^{b} f^{(1)}\left(\zeta\right) \left[-\left(\psi_{k}^{(1)\Delta}\left(\zeta\right)\right)^{\nabla} + q\left(\zeta\right) \psi_{k}^{(1)}\left(\zeta\right)\right] \Delta \zeta \\ & + \int_{d}^{b} f^{(2)}\left(\zeta\right) \left[-\left(\psi_{k}^{(2)\Delta}\left(\zeta\right)\right)^{\nabla} + q\left(\zeta\right) \psi_{k}^{(2)}\left(\zeta\right)\right] \Delta \zeta \\ & = -h_{2} f^{(2)\nabla}\left(b\right) \psi_{k}^{(2)\nabla}\left(b\right) - h_{1} f^{(1)\nabla}\left(a\right) \psi_{k}^{(2)\Delta}\left(a\right) + \lambda_{k} c_{k}, \end{split}$$

and

$$\begin{split} & \int_{a}^{d} \psi_{k}^{(1)\Delta}\left(\zeta\right) \psi_{m}^{(1)\Delta}\left(\zeta\right) \Delta \zeta + \int_{d}^{b} \psi_{k}^{(2)\Delta}\left(\zeta\right) \psi_{m}^{(2)\Delta}\left(\zeta\right) \Delta \zeta \\ & + \int_{a}^{d} q\left(\zeta\right) \psi_{k}^{(1)}\left(\zeta\right) \psi_{m}^{(1)}\left(\zeta\right) \Delta \zeta + \int_{d}^{b} q\left(\zeta\right) \psi_{k}^{(2)}\left(\zeta\right) \psi_{m}^{(2)}\left(\zeta\right) \Delta \zeta \\ & = \psi_{m}^{(1)\Delta}\left(\rho\left(d-\right)\right) \psi_{k}^{(1)}\left(d-\right) + \psi_{m}^{(2)\Delta}\left(\rho\left(b\right)\right) \psi_{k}^{(2)}\left(b\right) \end{split}$$

$$-\psi_{m}^{(1)\Delta}(a)\psi_{k}^{(1)}(a) - \psi_{m}^{(2)\Delta}(d+)\psi_{k}^{(2)}(d+)$$

$$+ \int_{a}^{d} \psi_{k}^{(1)}(\zeta) \left[ -\left(\psi_{m}^{(1)\Delta}(\zeta)\right)^{\nabla} + q(\zeta)\psi_{m}^{(1)}(\zeta) \right] \Delta \zeta$$

$$+ \int_{d}^{b} \psi_{k}^{(2)}(\zeta) \left[ -\left(\psi_{m}^{(2)\Delta}(\zeta)\right)^{\nabla} + q(\zeta)\psi_{m}^{(2)}(\zeta) \right] \Delta \zeta$$

$$= \psi_{k}^{(2)}(b)\psi_{m}^{(2)\nabla}(b) - \psi_{k}^{(1)}(a)\psi_{k}^{(1)\nabla}(a)$$

$$+ \lambda_{k} \left[ \int_{a}^{d} \psi_{k}^{(1)}(\zeta)\psi_{m}^{(1)}(\zeta) \Delta \zeta + \int_{d}^{b} \psi_{k}^{(2)}(\zeta)\psi_{m}^{(2)}(\zeta) \Delta \zeta \right]$$

$$= -h_{1}\psi_{k}^{(2)\nabla}(b)\psi_{m}^{(2)\nabla}(b) - h_{2}\psi_{k}^{(1)\nabla}(a)\psi_{m}^{(1)\nabla}(a) + \lambda_{k}\delta_{km},$$

where

$$\delta_{km} := \left\{ \begin{array}{ll} 1, & \text{if } k = m, \\ 0, & \text{if } k \neq m. \end{array} \right.$$

Therefore, we obtain

$$S\left(f(\zeta) - \sum_{k=1}^{N} c_k \psi_k(\zeta)\right) = h_1 \left[f^{(1)\Delta}(a)\right]^2 + h_2 \left[f^{(2)\Delta}(\rho(b))\right]^2$$

$$+ \int_a^d (f^{(1)\Delta}(\zeta))^2 \Delta \zeta + \int_a^d q(\zeta) f^{(1)2}(\zeta) \Delta \zeta$$

$$+ \int_d^b (f^{(2)\Delta}(\zeta))^2 \Delta \zeta + \int_d^b q(\zeta) f^{(2)2}(\zeta) \Delta \zeta$$

$$- \sum_{k=1}^{N} \lambda_k c_k^2.$$

Moreover, we find

(2.17) 
$$\sum_{k=1}^{\infty} \lambda_k c_k^2 \le h_1 \left[ f^{(1)\Delta}(a) \right]^2 + h_2 \left[ f^{(2)\Delta}(\rho(b)) \right]^2 + \int_a^d (f^{(1)\Delta}(\zeta))^2 \Delta \zeta + \int_a^d q(\zeta) f^{(1)2}(\zeta) \Delta \zeta + \int_d^b (f^{(2)\Delta}(\zeta))^2 \Delta \zeta + \int_d^b q(\zeta) f^{(2)2}(\zeta) \Delta \zeta.$$

since S is nonnegative for all N. Thus, the convergence of the series

$$\sum_{k=1}^{\infty} \lambda_k c_k^2$$

follows.

Now, we shall prove that the series

(2.18) 
$$\sum_{k=1}^{\infty} |c_k \psi_k(\zeta)|$$

is uniformly convergent on I. Since  $\mathcal{T}\psi_k = \lambda_k \psi_k$ ,  $k \in \mathbb{N}$ , we obtain

$$\psi_k(\zeta) = \lambda_k \left( \mathcal{T}^{-1} \psi_k \right)(\zeta) = \lambda_k \langle G(\zeta, t), \psi_k \rangle, \quad k \in \mathbb{N}.$$

If we rewrite the series (2.18), we see that

(2.19) 
$$\sum_{k=1}^{\infty} |c_k \psi_k(\zeta)| = \sum_{k=1}^{\infty} \lambda_k |c_k \Upsilon_k(\zeta)|,$$

where

$$\Upsilon_k(\zeta) = \langle G(\zeta, t), \psi_k \rangle, \quad k \in \mathbb{N}.$$

This can be regarded as the Fourier coefficients of  $G(\zeta, t)$  as a function of t. It follows from (2.17) that

$$\sum_{k=1}^{\infty} \lambda_{k} \Upsilon_{k}^{2}(\zeta) \leq h_{1} \left[ G^{(1)\Delta}(\zeta, a) \right]^{2} + h_{2} \left[ G^{(2)\Delta}(\zeta, \rho(b)) \right]^{2}$$

$$+ \int_{a}^{d} (G^{(1)\Delta}(\zeta, t))^{2} \Delta t + \int_{a}^{d} q(t) G^{(1)2}(\zeta, t) \Delta t$$

$$+ \int_{d}^{b} (G^{(2)\Delta}(\zeta, t))^{2} \Delta t + \int_{a}^{b} q(t) G^{(2)2}(\zeta, t) \Delta t.$$

Since all the functions appearing under the integral sign are bounded, we infer that

$$\sum_{k=1}^{\infty} \lambda_k \Upsilon_k^2(\zeta) \le C,$$

where C is a constant. Applying the Cauchy–Schwartz inequality to (2.19), we obtain

(2.20) 
$$\sum_{k=n}^{n+m} \lambda_k \left| c_k \Upsilon_k \left( \zeta \right) \right| \le \sqrt{\sum_{k=n}^{n+m} \lambda_k c_k^2} \sqrt{\sum_{k=n}^{n+m} \lambda_k \Upsilon_k^2 \left( \zeta \right)}$$

$$\leq \sqrt{C} \sqrt{\sum_{k=n}^{n+m} \lambda_k c_k^2}.$$

From (2.17) and (2.20), the series (2.18) is uniformly convergent on I. Since

$$\left| \sum_{k=1}^{\infty} c_k \psi_k \left( \zeta \right) \right| \leq \sum_{k=1}^{\infty} \left| c_k \psi_k \left( \zeta \right) \right|,$$

the series (2.15) is also uniformly convergent on I. Let

(2.21) 
$$f_1(\zeta) = \sum_{k=1}^{\infty} c_k \psi_k(\zeta).$$

Then, for  $k \in \mathbb{N}$ , we obtain

$$\int_{a}^{d} f_{1}^{(1)}(\zeta) \, \psi_{k}^{(1)}(\zeta) \, \Delta \zeta + \int_{d}^{b} f_{1}^{(2)}(\zeta) \, \psi_{k}^{(2)}(\zeta) \, \Delta \zeta = c_{k}$$

due to the series (2.21) is uniformly convergent on I. Therefore, the Fourier coefficients of f and  $f_1$  are the same. From (2.14), we find  $f - f_1 = 0$ , since the Fourier coefficients of  $f - f_1$  are zero. This finishes the proof.

**Acknowledgment.** The authors would like to thank the reviewers for all useful and helpful comments on our manuscript.

#### References

- 1. B.P. Allahverdiev and H. Tuna, *Uniform convergence of generalized Fourier series of Hahn–Sturm-Liouville problem*, Konuralp J. Math., 9 (2) (2021), pp. 250-259.
- B.P. Allahverdiev and H. Tuna, Impulsive Sturm-Liouville problems on time scales, Facta Univ., Ser. Math. Inf., 37 (3) (2022), pp. 651-666.
- 3. K. Aydemir and O.Sh. Mukhtarov, Class of Sturm-Liouville problems with eigenparameter dependent transmission conditions, Numer. Funct. Analys. Optimiz., 38 (10) (2017), pp. 1260-1275.
- 4. J.M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc., Providence, 1968.
- 5. M. Bohner and A. Peterson, *Dynamic equations on time scales*, Birkhäuser, Boston, 2001.
- 6. G.Sh. Guseinov, Eigenfunction expansions for a Sturm-Liouville problem on time scales, Int. J. Difference Equ., 2 (1) (2007), pp. 93-104.
- 7. A. Huseynov and E. Bairamov, On expansions in eigenfunctions for second order dynamic equations on time scales, Nonlinear Dyn. Syst. Theory, 9 (1) (2009), pp. 77-88.
- 8. N. Levinson, A simplified proof of the expansion theorem for singular second order linear differential equations, Duke Math. J., 18 (1951), pp. 57-71.

- 9. B.M. Levitan and I.S. Sargsjan, Sturm-Liouville and Dirac Operators, Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991 (translated from the Russian).
- 10. M.A. Naimark, *Linear differential operators*, 2nd edn, Nauka, Moscow, 1969; English transl. of 1st edn, Parts 1, 2, Ungar, New York, 1967, 1968.
- 11. H. Olgar, O.Sh. Mukhtarov and K. Aydemir, Some properties of eigenvalues and generalized eigenvectors of one boundary value problem, Filomat, 32 (3) (2018), pp. 911-920.
- 12. V.A. Steklov, Osnovnye Zadachi Matematicheskoi Fiziki (Basic problems of Mathematical Physics), 1, Petrograd, 1922.
- 13. M.H. Stone, A comparison of the series of Fourier and Birkhoff, Trans. Amer. Math. Soc. 28 (1926), pp. 695-761.
- 14. E.C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I. Second Edition Clarendon Press, Oxford, 1962.

Email address: bilenderpasaoglu@gmail.com

Email address: hustuna@gmail.com

Email address: hamlet@khazar.org

<sup>&</sup>lt;sup>1</sup> Department of Mathematics, Khazar University, AZ1096 Baku, Azerbaijan and Research Center of Econophysics, UNEC-Azerbaijan State University of Economics, Baku, Azerbaijan.

 $<sup>^2</sup>$  Department of Mathematics, Mehmet Akif Ersoy University, 15030 Burdur, Turkey and Research Center of Econophysics, UNEC-Azerbaijan State University of Economics, Baku, Azerbaijan.

 $<sup>^3</sup>$  Department of Mathematics, Khazar University, AZ1096 Baku, Azerbaijan.