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INTRODUCTION 

The emergence of the COVID-19 pandemic, originating from the novel coronavirus SARS-

CoV-2 in late 2019 in Wuhan, China, led to unprecedented global challenges for healthcare sys-

tems. Its profound impact affected various aspects of life, including public health, the economy, 

social interactions, and mental well-being. Healthcare systems worldwide faced significant strain 

as they struggled to cope with the sudden surge in patients requiring medical care. Hospitals be-

came overwhelmed, resulting in shortages of essential medical supplies such as personal protective 

equipment (PPE), ventilators, and hospital beds. Healthcare workers endured immense pressure 

and exhaustion from the demanding task of caring for COVID-19 patients. Moreover, the pandemic 

exacerbated existing healthcare disparities, disproportionately affecting vulnerable populations 

such as the elderly, racial and ethnic minorities, and individuals with underlying health conditions. 

Factors such as limited access to healthcare services, socioeconomic issues, and systemic inequal-

ities contributed to variations in infection rates and outcomes. The early and accurate detection of 

COVID-19 cases played a crucial role in managing and containing the disease. Rapid identification 

of cases facilitated the prompt implementation of isolation measures, contact tracing, and quaran-

tine protocols, which are vital for slowing the spread of the virus. Additionally, early detection 

enabled timely medical intervention and supportive care for individuals with severe symptoms, 

potentially reducing morbidity and mortality rates. Various diagnostic tests, including molecular 

(PCR) tests, antigen tests, and antibody tests, were developed to detect COVID-19 infections. 

These tests served important roles in screening individuals, diagnosing active infections, and iden-

tifying past exposure to the virus. However, challenges such as test availability, accuracy, and 

turnaround times hindered widespread testing efforts. 

The significance of utilizing transfer learning for COVID-19 detection stems from various fac-

tors: 

• Limited Data Availability: During the early stages of the pandemic, there was a scarcity of 

labeled COVID-19 datasets for training machine learning models. Transfer learning allows 

for the adaptation and fine-tuning of pre-trained models from related tasks, such as medical 

imaging or general pathology, even with limited COVID-19-specific data. 
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• Speed and Efficiency: Transfer learning expedites the development of COVID-19 detection 

models by leveraging pre-existing knowledge encoded in pre-trained models. This mini-

mizes the necessity for extensive data collection and model training from scratch, facilitat-

ing quicker deployment of diagnostic tools to combat the pandemic. 

• Generalizability: Transfer learning enables the creation of robust and adaptable COVID-19 

detection models that perform effectively across various populations, healthcare environ-

ments, and imaging modalities. By transferring knowledge gleaned from diverse datasets, 

these models can adjust to differences in image quality, patient demographics, and disease 

presentations. 

• Resource Conservation: Developing machine learning models from the ground up demands 

substantial computational resources and expertise. Transfer learning conserves resources 

by repurposing pre-trained models and fine-tuning them on smaller COVID-19 datasets, 

making it more accessible to researchers and healthcare professionals with limited re-

sources (Lahsaini et al., 2021). 

In contrast, traditional diagnostic methods for COVID-19, such as RT-PCR tests and imaging 

techniques like chest X-rays and CT scans, pose several limitations: 

• Labor-intensive and Time-consuming: RT-PCR tests, the gold standard for diagnosing 

COVID-19, require specialized equipment, reagents, and trained personnel to administer. 

Additionally, obtaining results can be time-consuming, potentially delaying patient care 

and public health interventions. 

• Subject to False Negatives and False Positives: RT-PCR tests may yield false-negative re-

sults, especially in cases with low viral loads or improper sample collection. Conversely, 

imaging techniques like chest X-rays and CT scans may produce false-positive results, lead-

ing to unnecessary interventions and resource utilization. 

• Dependence on Human Interpretation: The interpretation of diagnostic tests such as chest 

X-rays and CT scans relies on the expertise of radiologists, introducing subjectivity and 

variability in diagnosis. Moreover, interpretation may be influenced by factors like fatigue 

and experience, affecting diagnostic accuracy (Jia et al., 2021). 
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Artificial intelligence (AI) and machine learning (ML) techniques offer promising solutions to 

address these limitations and enhance diagnostic accuracy for COVID-19 detection: 

• Automated Analysis: AI and ML algorithms can automate the analysis of diagnostic tests, 

reducing reliance on manual interpretation and potentially enhancing consistency and effi-

ciency. 

• Enhanced Sensitivity and Specificity: ML models can be trained to identify subtle patterns 

and features indicative of COVID-19 infection, potentially improving the sensitivity and 

specificity of diagnostic tests compared to traditional methods. 

• Integration of Multimodal Data: AI techniques enable the integration of diverse data 

sources, such as clinical data, imaging studies, and laboratory results, to develop compre-

hensive diagnostic models that leverage complementary information for improved accu-

racy. 

• Real-time Decision Support: AI-powered diagnostic tools can provide real-time decision 

support to healthcare providers, assisting in swift and accurate diagnosis, triage, and patient 

management, particularly in resource-constrained settings or during surges in COVID-19 

cases (Li et al., 2024). Table 1 presents a comparison between Transfer Learning and 

AI/ML Techniques versus Traditional Diagnostic Methods for COVID-19 Detection. 

Table 1. Comparison of Transfer Learning and AI/ML Techniques versus Traditional 

Diagnostic Methods for COVID-19 Detection 

Aspect 
Transfer Learning and AI/ML 

Techniques 

Traditional Diagnostic Meth-

ods 

Data Availability 

Utilizes pre-trained models and 

adapts them even with limited 

COVID-19 data 

Dependent on availability of la-

beled datasets 

Speed and Efficiency 
Speeds up model development by 

leveraging pre-existing knowledge 

Labor-intensive and time-con-

suming procedures 

Generalizability 

Creates robust models effective 

across populations and imaging mo-

dalities 

Subject to variability in interpre-

tation and diagnostic accuracy 
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Aspect 
Transfer Learning and AI/ML 

Techniques 

Traditional Diagnostic Meth-

ods 

Resource Conserva-

tion 

Conserves computational resources 

and expertise 

Requires specialized equipment 

and trained personnel 

Automated Analysis 
Automates diagnostic test analysis, 

reducing manual interpretation 

Relies on human interpretation, 

introducing subjectivity 

Enhanced Sensitiv-

ity/Specificity 

Identifies subtle patterns for im-

proved sensitivity and specificity 

Prone to false negatives and false 

positives 

Integration of Multi-

modal Data 

Integrates diverse data sources for 

comprehensive diagnostic models 

Limited to individual test modal-

ities 

Real-time Decision 

Support 

Provides real-time decision support 

for swift and accurate diagnosis 

May lead to delays in patient 

care due to manual processes 

The dataset utilized in this research was sourced from Kaggle and encompasses chest X-

ray images. Initially, the dataset exhibited imbalances, with varying quantities of images across the 

different classes. To rectify this, the authors employed a combination of under-sampling and over-

sampling techniques to ensure a harmonized representation of each class. A novel Singular Value 

Decomposition (SVD)-based image processing method was employed by the authors to augment 

the minor classes, specifically Viral Pneumonia and COVID. This approach introduced subtle al-

terations in luminance and contrast, thereby enriching the diversity of images within these classes. 

Furthermore, Contrast Limited Adaptive Histogram Equalization (CLAHE) was applied to the en-

tire dataset to accentuate features in the chest X-ray images. The empirical selection of CLAHE 

parameters was meticulously executed to achieve optimal contrast enhancement without introduc-

ing excessive artifacts. It is pertinent to highlight that, for training purposes, a subset of images was 

chosen from each class, resulting in a balanced dataset with approximately equivalent representa-

tion across all classes. Nevertheless, the count of images per class in the augmented dataset may 

exhibit slight disparities, reflecting the inherent variability within each class. The authors con-

ducted a comprehensive analysis of intra-class variance utilizing correlation coefficients to justify 

the selection of images for the augmented dataset. The dataset encompasses both training and test-

ing images, with the testing images provided in a distinct folder devoid of preprocessing. This 
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partitioning facilitates an unbiased evaluation of model performance on unseen data, ensuring the 

robustness and generalizability of the developed models. 

The main goal of this research is to create and assess a model based on transfer learning for the 

automatic identification of COVID-19 using chest X-ray images. The specific objectives are: 

• Assessing the effectiveness of transfer learning techniques in applying pre-trained convo-

lutional neural networks (CNNs) for COVID-19 detection. 

• Analyzing the model’s ability to accurately differentiate between COVID-19 cases and 

other respiratory conditions such as pneumonia and lung opacity. 

• Testing the model’s robustness and generalization across different datasets and imaging 

methods. 

• Comparing the proposed model’s performance with existing methods for COVID-19 de-

tection using medical imaging data. 

Providing insights into the potential clinical applications and implications of the model to help 

healthcare professionals diagnose COVID-19 cases more efficiently and accurately.The study fo-

cuses on developing and evaluating a transfer learning-based approach for COVID-19 detection 

using chest X-ray images. The scope of the research includes the following components: 

• Dataset: Utilizing a publicly available dataset from Kaggle, containing chest X-ray images 

classified into four categories: COVID, Lung opacity, Normal, and Viral Pneumonia. Bal-

ancing of the dataset is ensured through under-sampling and over-sampling techniques to 

maintain equal representation of each class. 

• Methodology: Employing transfer learning techniques to leverage pre-trained CNN models 

for feature extraction and classification. Data preprocessing, model training, and evaluation 

processes are carried out using Python programming language and popular deep learning 

frameworks like TensorFlow. 

• Evaluation Metrics: Assessing the performance of the developed model using standard 

evaluation metrics such as accuracy, precision, recall, F1-score and confusion matrix. Ad-

ditionally, qualitative analysis of model predictions and visualizations may be conducted to 

gain insights into the model's behavior and decision-making processes. 
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• Limitations: Acknowledging various limitations and constraints associated with the study, 

including dataset availability and quality, computational resources, and potential biases in 

model predictions. Furthermore, the study focuses solely on chest X-ray images for 

COVID-19 detection and does not consider other imaging modalities or clinical data. 

• Ethical Considerations: Adhering to ethical guidelines and regulations governing the use of 

medical data and machine learning techniques in healthcare research. Measures are taken 

to ensure patient privacy, data security, and transparency in reporting research findings 

(Roy et al., 2022). 

The thesis is structured into several parts: Introduction, Literature Review, Methodology, Im-

plementation and training, Results and discussion, and Conclusion. 

This research aims to address challenges in early COVID-19 detection by applying transfer 

learning to chest X-ray images. Its significance lies in contributing to COVID-19 diagnosis efforts, 

improving medical imaging and healthcare technology, promoting transparency and collaboration 

in research, and potentially influencing future healthcare solutions beyond the pandemic. 

In conducting this research, ethical considerations are paramount. I recognize the sensitive na-

ture of medical data, particularly patient images, and the importance of maintaining patient privacy 

and confidentiality. Precautions have been taken to de-identify and anonymize all data used in this 

study in order to protect the privacy of individuals. Additionally, I will make efforts to mitigate 

any biases in the dataset and analysis to ensure fair and equitable results. Furthermore, transparency 

will be maintained throughout the research process, and all findings will be reported accurately and 

objectively to contribute to the advancement of knowledge in the field of medical imaging and 

COVID-19 diagnosis. 

In conclusion, this introduction has provided an overview of the COVID-19 pandemic, the 

dataset sourced for this study, and the objectives of the research. By leveraging transfer learning 

techniques on medical imaging data, I aimed to develop a model for automated detection of 

COVID-19, contributing to the global efforts in combating the pandemic. The subsequent chapters 

will delve into the methodology, results, and discussions, offering insights into the effectiveness of 

the proposed approach and its implications for healthcare. Through this research, I aspired to 
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enhance diagnostic capabilities and ultimately improve patient outcomes in the fight against 

COVID-19. 

Research Questions: 

• What challenges arise in using pre-trained models for COVID-19 prediction? 

• How do the developed models perform compared to existing approaches? 

Relevance: 

Accurate prediction methods for COVID-19 are crucial in combating its global impact. Uti-

lizing advanced machine learning, particularly transfer learning, addresses the pressing need for 

rapid and reliable diagnostic tools in healthcare. 

Importance: 

Effective diagnostic methods are urgently needed to manage the spread of COVID-19. Lev-

eraging transfer learning enhances the accuracy of COVID-19 detection from chest X-ray images, 

impacting patient outcomes, healthcare resource optimization, and public health strategies. This 

research also advances medical imaging and machine learning fields. 

Object: 

The research aims to develop and evaluate machine learning models for COVID-19 predic-

tion from chest X-ray images. Specifically, it focuses on fine-tuning transfer learning techniques 

to adapt models to the COVID-19 dataset's unique characteristics. 

Subject: 

Various machine learning architectures, such as VGG16, EfficientNet, InceptionV3, and 

MobileNet, are investigated in classifying chest X-ray images as COVID-19 positive or negative. 

The study provides a detailed comparative analysis to determine the most effective model for this 

task.  
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CHAPTER 1. LITERATURE REVIEW 

During the ongoing COVID-19 pandemic, there has been a notable upsurge in interest in 

harnessing sophisticated computational methods, notably transfer learning, for forecasting and an-

alyzing the spread of the disease and its repercussions. This literature review aims to investigate 

and amalgamate significant contributions and advancements in the realm of COVID-19 prediction 

employing transfer learning methodologies. The adoption of transfer learning in the context of 

COVID-19 forecasting signifies a considerable departure from conventional epidemiological meth-

ods, presenting promising avenues for enhancing prediction accuracy and decision-making proce-

dures. Through the utilization of pre-existing models and insights from related fields, transfer learn-

ing empowers researchers to tailor predictive models specifically for COVID-19 dynamics, poten-

tially augmenting the efficacy of public health interventions and resource allocation strategies. 

This review will scrutinize seminal works and recent research endeavors in the arena of 

transfer learning applied to COVID-19 prediction, delving into the methodologies employed, data 

sources utilized, and the performance metrics evaluated across various studies. By offering insights 

into the strengths, limitations, and prospective directions of transfer learning-based approaches in 

combating the pandemic, it aims to contribute to the evolving body of knowledge in this critical 

area. 

Marios Constantinou et al. (2023) aimed to utilize advanced machine learning methods, 

particularly transfer learning, for the automated identification of COVID-19 in chest X-ray images. 

The main dataset used is the COVID-QU dataset, which comprises 33,920 CXR images catego-

rized into three classes: COVID-19, non-COVID-19, and Normal. To compile this dataset, various 

sources, including databases, repositories, and medical schools, were accessed. The dataset was 

then divided into training, validation, and test sets, ensuring balanced representation across the 

classes in each subset. Five cutting-edge Convolutional Neural Network (CNN) architectures, 

namely ResNet50, ResNet101, DenseNet121, DenseNet169, and InceptionV3, were assessed for 

their ability to classify COVID-19 from CXR images. These models underwent pre-training on the 

ImageNet dataset and fine-tuning on the COVID-QU dataset. Techniques such as random rotation 

and horizontal flip were employed to augment the data and mitigate overfitting. Image resizing was 

performed to accommodate the specific requirements of each architecture. The performance of 
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each model was evaluated using precision, recall, and F1-score metrics, with a particular emphasis 

on achieving high recall rates for COVID-19 detection. ResNet101 emerged as the most effective 

model, achieving a recall of 96% across all metrics. However, it had the highest number of trainable 

parameters, indicating greater computational complexity compared to the other models. In conclu-

sion, this study underscores the effectiveness of transfer learning in COVID-19 detection from 

chest X-ray images and emphasizes the significance of high recall in identifying COVID-19 posi-

tive cases. 

Salih Sarp et al. (2023) aimed to improve the automated identification of COVID-19 in 

chest X-ray images by integrating lung segmentation and utilizing transfer learning methods. Lung 

segmentation is introduced to enhance the detection and interpretation processes by emphasizing 

features within the lung area and facilitating explanations within the framework. Transfer learning 

is then employed to accelerate feature extraction and categorization, especially advantageous given 

the limited availability of X-ray images. Following feature extraction, the X-rays undergo classifi-

cation, and the model's efficacy is assessed. A crucial component of the approach involves high-

lighting regions suggestive of COVID-19 pneumonia using a LIME-based heatmap explanation, 

aiding physicians in non-invasive diagnosis. In the lung segmentation phase, a hybrid U-Net archi-

tecture is deployed, incorporating a pre-trained VGG11 feature extractor. Diverse augmentation 

techniques are applied, achieving high Jaccard and dice scores. Transfer learning entails utilizing 

pre-trained deep learning models such as VGG-Net, ResNet, and Inception V3 to enhance feature 

extraction and classification, adapted for COVID-19 detection tasks based on large datasets like 

ImageNet. Explainable artificial intelligence (XAI) methods like LIME are employed to enhance 

the interpretability of AI models. LIME generates heatmap explanations to pinpoint areas indica-

tive of COVID-19 pneumonia in X-ray images, assisting in diagnosis and prognosis. The perfor-

mance of the proposed model is compared against models lacking transfer learning and lung seg-

mentation, demonstrating enhanced resource management and efficiency. The study illustrates the 

potential of AI, coupled with XAI tools, for expedited and more precise diagnosis and monitoring 

of COVID-19, particularly when analyzing chest X-ray images. 

Arora et al. (2021) in this study aimed to identify whether lung CT scans indicate the pres-

ence or absence of COVID-19. This process involves using a residual dense neural network 

(RDNN) to preprocess CT images, improving spatial resolution while keeping costs and 
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complexity low. RDNN overcomes the drawbacks of traditional super-resolution methods by uti-

lizing deep learning algorithms to extract detailed information from CT scans. Two standard da-

tasets, SARS-COV-2 CT and COVID-CT were utilized for the transfer learning models in this 

research. These datasets were split into training and testing sets, with the COVID-CT-Dataset com-

prising 349 COVID-19 CT images and 463 non-COVID-19 CTs, while the SARS-COV-2 CT in-

cluded 2482 CT scan images. The RDNN method involved employing a residual dense network 

(RDN) to tackle issues with low-resolution in medical imaging. RDN uses residual dense blocks 

(RDB) for feature extraction, hierarchical feature fusion, and up-sampling techniques to enhance 

CT image resolution. Additionally, image augmentation methods were used to diversify the dataset 

and enhance classification accuracy. Geometric adjustments were applied to augment lung CT im-

ages, increasing the dataset's size. Transfer learning models like DenseNet121, MobileNet, 

VGG16, ResNet50, InceptionV3, and XceptionNet were utilized for classification. These models 

were pretrained on the ImageNet dataset and adapted for COVID-19 detection. Performance eval-

uation metrics such as accuracy, precision, recall, and F1 score were employed to gauge model 

effectiveness. Results showed enhanced performance when employing super-resolution tech-

niques, indicating the effectiveness of the proposed methodology for identifying COVID-19 in 

lung CT scans. 

This research conducted by Sai Zhang and Guo-Chang Yuan (2022) focused on creating 

deep learning models to automatically detect COVID-19 using chest CT scans, employing convo-

lutional neural network (CNN) architectures known for their effectiveness in image classification. 

Specifically, the study examines the performance of VGG19 and ResNet50V2 architectures, with 

the goal of improving their efficiency in COVID-19 diagnosis. To enhance model performance, 

they introduce a new method involving a 2D global max pooling layer instead of traditional layers 

like flatten or 2D global average pooling. For VGG19-based models, they utilize transfer learning 

by initializing the pretrained convolutional layers with ImageNet weights. These models include 

additional layers such as a flatten layer, dense layer, dropout layer, and densely connected classi-

fier. Similarly, ResNet50V2-based models employ the residual learning framework and pretrained 

convolutional layers for feature extraction. These models are then compared with other advanced 

deep learning architectures, including Vision Transformer, MobileNetV2, InceptionResNetV2, and 

ResNet152V2. The training process involves data preprocessing steps such as normalization and 

augmentation, where augmentation techniques are applied to diversify the dataset and reduce 
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overfitting. Each model undergoes training using a binary cross-entropy loss function and the 

Adam optimizer, with specific layers frozen and jointly trained to optimize performance. The re-

sults show high training and validation accuracies for both VGG19 and ResNet50V2-based models, 

surpassing benchmarking models. Notably, the use of the 2D global max pooling layer improves 

COVID-19 detection accuracy by around 1%. Their top-performing model, VGG19 with 2D global 

max pooling, achieves an accuracy of 94.12%, sensitivity of 91.40%, specificity of 96.95%, false 

discovery rate (FDR) of 3.11%, and an area under the curve (AUC) of 0.9744. Additionally, they 

introduced a heatmap method to highlight lesion areas in COVID-19 chest CT images, aiding in 

abnormal pattern identification. They also develop online simulation software for COVID-19 de-

tection using CT images, enabling rapid radiology checks with a classification speed as fast as 1.1 

ms per CT image. Ensuring ethical approval, the current clinical trial follows the principles of the 

Declaration of Helsinki and the International Conference on Harmonization–Good Clinical Prac-

tice guidelines. 

The work of Arpita Halder and Bimal Datta (2021) on identifying COVID-19 using lung CT scans, 

utilizing a dataset compiled by Angelov et al. This dataset consists of genuine patient CT scans 

gathered from hospitals in Sao Paulo, Brazil, and is accessible on Kaggle. It contains 2481 CT scan 

images categorized into COVID and non-COVID groups, with 1252 scans from COVID-positive 

patients and 1229 from COVID-negative patients. An 8:2 ratio was used for the split between train-

ing and testing data. The methodology involves developing a two-dimensional DL framework 

named KarNet, which relies on transfer learning. Transfer learning, renowned for constructing 

models swiftly with limited datasets, was utilized in three stages: data pre-processing, feature ex-

traction, and binary classification. Four pre-trained models (DenseNet201, MobileNet, Res-

Net50V2, and VGG16) were employed, each supplemented with extra layers to assess performance 

on augmented and unaugmented datasets. CT-scan images underwent pre-processing and normal-

ization before being inputted into the pre-trained models for feature extraction. The models' con-

volutional bases were re-trained, and classifiers were substituted for binary classification. Data 

augmentation methods, such as image rotation, shifting, and horizontal flipping, were employed to 

prevent overfitting. KarNet surpassed previous models, achieving remarkable accuracy, with 

DenseNet201 exhibiting the best performance. Tensorflow was utilized for implementation, allow-

ing efficient utilization of computational resources. The KarNet model exhibited exceptional diag-

nostic performance, achieving 96.79% accuracy on both augmented and unaugmented datasets. 
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Other models (VGG16, ResNet50V2, MobileNet) also demonstrated promising accuracy. The pro-

posed framework enhances diagnostic capabilities and could be integrated into hospitals with CT 

scanners, offering an automated option for COVID-19 testing, potentially saving time and lives. 

The methodology adopted by Sahil Lawton and Serestina Viriri (2021) adheres to a stand-

ard image processing sequence involving data acquisition, preprocessing, segmentation, feature 

extraction, and classification. Initially, the original dataset, alongside two additional duplicates, 

undergoes Histogram Equalization (HE) and Contrast Limited Adaptive Histogram Equalization 

(CLAHE), yielding three distinct datasets. Subsequently, each dataset is partitioned into training, 

validation, and testing subsets in a 60:20:20 distribution, with data augmentation applied to the 

training data to prevent overfitting. Automatic segmentation and feature extraction are executed by 

the convolutional bases of transfer learning models, while classification is carried out using a fully 

connected artificial neural network. The dataset utilized, known as the SARS-CoV-2 CT scan da-

taset, comprises 2482 images sourced from patients in São Paulo, Brazil, categorized into COVID-

19-positive and COVID-19-negative classes. Histogram Equalization (HE) and Contrast Limited 

Adaptive Histogram Equalization (CLAHE) techniques are deployed to amplify image contrast 

and enhance feature extraction. Data augmentation strategies are employed to augment the scale 

and quality of the training dataset, thereby enhancing the performance and adaptability of the deep 

learning model. Experiments are conducted utilizing five transfer learning architectures—ResNet-

101, VGG-19, DenseNet201, EfficientNet-B4, and MobileNet-V2—augmented with a fully con-

nected hidden layer and softmax output layer. Training entails iterative updates of convolutional 

base and classifier weights using the categorical cross entropy loss function and RMSprop opti-

mizer across 200 epochs. Performance evaluation metrics encompassing accuracy, precision, re-

call, F1-score, specificity, and ROC-AUC are employed to gauge the models' efficacy on the testing 

dataset. The VGG-19 architecture coupled with Contrast Limited Adaptive Histogram Equalization 

(CLAHE) emerges as the top-performing model. The study underscores the potential of transfer 

learning models in streamlining COVID-19 detection from lung CT scans, offering an alternative 

approach to traditional testing methodologies. Future research avenues include delving into auto-

matic hyperparameter optimization techniques and crafting transfer learning-based frameworks tai-

lored for processing 3D CT scans. 
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The research conducted by Shubham Agrawal et al. (2023) aimed to employ advanced ma-

chine learning techniques, particularly transfer learning, to automate the identification of COVID-

19 from chest X-ray images. The dataset utilized in this study, curated by Cohen et al., comprises 

125 chest X-ray images diagnosed with COVID-19, along with 500 images each for no-findings 

and pneumonia, sourced from publicly available repositories. Various deep learning models were 

assessed using the mean accuracy of five-fold cross-validation, where each model underwent train-

ing on five distinct sets of 900 images and testing on 225 images. Transfer learning, a strategy 

involving the transfer of knowledge from pre-trained deep learning models to novel tasks, was 

utilized to enhance the performance of the classification model. Multiple established models in-

cluding VGG, InceptionV3, ResNet, MobileNetV2, DenseNet121, and Xception were scrutinized 

to devise the proposed model. This proposed model, a modified version of ResNet50 based on 

transfer learning, surpassed other models in terms of accuracy. To ensure a comprehensive analy-

sis, k-fold cross-validation was implemented, ensuring consistent evaluation of all models. Addi-

tionally, the dataset, code files, and output images are made accessible online to promote replicable 

research. Model interpretation methods such as LIME (Local Interpretable Model-Agnostic Expla-

nations) and Grad-CAM (Gradient-weighted Class Activation Mapping) were employed to inter-

pret the models' decisions and identify areas for enhancement. The experimental findings demon-

strated that the proposed model achieved notable accuracy in distinguishing COVID-19 and no-

findings, with a mean accuracy of 99.20%. In classifying COVID-19, no COVID-19, and pneumo-

nia, the proposed model exhibited an accuracy of 86.13%. A detailed analysis encompassing met-

rics like accuracy, recall, specificity, precision, and F1-score for both scenarios underscores the 

effectiveness of the proposed model in detecting COVID-19 from chest X-ray images. 

The introductory segment of the research by Linh T. Duong et al. (2023) delves into the 

fundamental concepts essential for grasping their methodology. They commence by introducing 

two families of deep neural networks, namely EfficientNet and MixNet, which serve as the foun-

dational framework for the classification process in their study. While EfficientNet aims to strike 

a balance between accuracy and computational efficiency through scaling in width, depth, and res-

olution dimensions, MixNet is geared towards reducing parameters and computational complexity, 

drawing inspiration from the MobileNets architecture. Both families offer diverse configurations 

tailored to specific scaling requirements. Transfer learning, a central tenet in their research, is suc-

cinctly discussed as a method for fine-tuning hyperparameters in deep neural networks. This 
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approach facilitates the transfer of knowledge from a well-established source domain to a new 

target domain, thus streamlining model training with a relatively smaller labeled dataset. They ex-

plore three distinct learning methodologies: ImageNet, AdvProp, and NS, each presenting unique 

advantages in model training and enhancing accuracy. Their primary research objective is to de-

velop an expert system utilizing EfficientNet and MixNet for automated COVID-19 detection from 

chest X-ray (CXR) and lung computed tomography (LCT) images. To achieve this, they propose 

three separate learning strategies—ImageNet, AdvProp, and NS—to expedite learning processes 

and enhance accuracy. Subsequently, the evaluation section elaborates on the datasets and meth-

odologies employed to evaluate the performance of their approach. During the evaluation phase, 

they employ four real-world datasets alongside recent implementations of EfficientNet and 

MixNet. They integrate pretrained weights from various sources to expedite training and ensure 

model robustness. Their evaluation criteria focus on metrics such as accuracy, precision, recall, 

and F1 score to gauge the effectiveness of their approach in predicting COVID-19 from CXR and 

LCT images. Additionally, they assess the computational efficiency of their models to ensure prac-

tical applicability. Upon analyzing the results, they observed that configurations utilizing Efficient-

Net and specific transfer learning methodologies demonstrate superior performance in accurately 

detecting COVID-19 from CXR and LCT images. Their approach surpasses existing studies in 

terms of accuracy, precision, recall, and F1 score, thereby affirming the efficacy of EfficientNet 

and MixNet in COVID-19 detection. Furthermore, EfficientNet proves particularly adept at han-

dling large-scale datasets, underscoring its potential for real-world applications. 

A study conducted by Ramachandran (2021) delves into the utilization of transfer learning, 

a technique harnessing the knowledge from pre-trained models, particularly ResNet, for COVID-

19 detection from lung CT images. Deep Convolutional Neural Networks (CNNs) rely heavily on 

the size of training datasets for accuracy, but training them with extensive datasets is time-consum-

ing. Transfer learning circumvents this by leveraging pre-existing knowledge. The process involves 

freezing initial layers, which contain generic information, and fine-tuning subsequent layers to 

learn specific features from the current dataset. Two methods of transfer learning are employed: 

freezing initial layers and training only subsequent layers, or fixing all layers except the classifica-

tion layer. ResNet, known for its performance with numerous layers, employs skip connections to 

mitigate the vanishing gradient problem. Three ResNet models (ResNet50, ResNet101, Res-

Net152) are used for classifying lung CT images, where the initial layers remain frozen, and 
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subsequent layers are fine-tuned on COVID-19 CT lung image datasets. Fine-tuning involves un-

freezing specific layers to learn features specific to COVID-19 CT images. The models are evalu-

ated based on accuracy and loss during training and testing stages. Results show improved accuracy 

after fine-tuning, with ResNet152 performing the best during testing. Comparison with existing 

methods demonstrates the efficacy of the proposed approach, particularly with ResNet152 outper-

forming other methods utilizing chest X-Ray images. 

Benbrahim et al. (2020) employed Deep Learning Pipelines on Apache Spark to expedite transfer 

learning. Their method involved utilizing pre-trained CNN architectures, specifically InceptionV3 

and ResNet50, in conjunction with logistic regression to classify chest X-ray images. Deep Learn-

ing Pipelines, integrated into Databricks Runtime ML, served as the framework for their deep 

learning workflows within the Apache Spark environment. The dataset comprised chest X-ray im-

ages sourced from two repositories: "COVID-19 chest xray" and "Chest X-Ray Images (Pneumo-

nia)" obtained from Kaggle. They assembled a dataset consisting of 160 COVID-19 patient images 

and 160 normal images, aiming to facilitate COVID-19 detection from chest X-ray images. These 

images were stored in the Databricks File System (DBFS) within the Databricks Workspace. Their 

experimentation took place in the Databricks Workspace utilizing a cluster configured with Data-

bricks Runtime 6.4. They managed and accessed the chest X-ray images in DBFS, organizing them 

into distinct paths for COVID-19 and normal images. Two convolutional neural network-based 

models, InceptionV3 and ResNet50, underwent training and testing on the chest X-ray images us-

ing Apache Spark. They adopted a deep transfer learning approach, merging Deep Learning Pipe-

lines and logistic regression. The dataset underwent partitioning into training and testing subsets 

to facilitate general principles learning while ensuring an accurate assessment of model perfor-

mance. Deep Learning Pipelines enabled swift transfer learning on the Apache Spark cluster, em-

ploying a DeepImageFeaturizer to extract features from pre-trained CNN models for logistic re-

gression. They evaluated the model's performance using metrics such as accuracy, F1-Score, 

weighted precision, and weighted recall. Both InceptionV3 and ResNet50 models exhibited high 

accuracy and performance across all tested indices. Their research underscores the efficacy of uti-

lizing deep transfer learning methods within the Apache Spark framework for COVID-19 detection 

from chest X-ray images. The amalgamation of these techniques yielded advanced outcomes, high-

lighting the model's ability to accurately distinguish individuals with COVID-19 from those with-

out it in X-ray images. 
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Çağın Polat et al. (2021) gathered three separate datasets from diverse origins, namely "ChestX-

ray14," "COVID-19 image data collection," and "Chest X-ray collection from Indiana University," 

with the aim of aiding COVID-19 diagnosis through chest X-ray analysis. The ChestX-ray14 da-

taset consisted of 112,120 frontal-view chest radiographs from 30,805 patients, focusing particu-

larly on those labeled with pneumonia. These labels were automatically generated using Natural 

Language Processing (NLP) techniques, boasting an accuracy rate of over 90%. The second da-

taset, COVID-19 image data collection, included 208 radiographs for COVID-19 cases and 41 for 

non-COVID-19 cases, albeit featuring some lossy images and adjustments by authors, potentially 

introducing bias. To counteract this potential bias, they proposed preprocessing methods. The third 

dataset, acquired from Indiana University, acted as a testing dataset for non-COVID-19 cases, fea-

turing 50 pneumonia cases manually identified by experts. The collected data were categorized 

into non-COVID-19 pneumonia and COVID-19 pneumonia cases, displaying a noticeable imbal-

ance in case numbers between these categories. To rectify this imbalance, they implemented strat-

egies during transfer learning and optimization phases. Preprocessing entailed converting radio-

graphs to JPEG format with varying compression levels and applying random adjustments to 

brightness, contrast, and sharpness to mitigate potential bias. Additionally, radiographs were col-

ored using the colormap JET to ensure compatibility with pre-trained architectures designed for 

RGB inputs. Augmentation techniques, such as flipping, rotating, zooming, and adjusting bright-

ness values, were employed to enrich dataset diversity. Due to the limited dataset size, they em-

ployed transfer learning, leveraging pre-trained architectures like ResNet, DenseNet, and VGG 

trained on ImageNet. Initially, convolutional layers were kept frozen, with only fully connected 

layers re-trained to distinguish COVID-19 pneumonia from non-COVID-19 pneumonia. Subse-

quently, fine-tuning was conducted on selected architectures to further optimize performance. The 

training process comprised three stages: exploring different architectures, fine-tuning, and evalu-

ating activation maps. Performance evaluation criteria included accuracy, recall, and precision, 

with confusion matrices utilized to summarize model performance. In the initial transfer learning 

stage, various architectures exhibited similar performance levels, leading them to fine-tune specific 

architectures based on computational efficiency and performance in analogous medical studies. 
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CHAPTER 2. METHODOLOGY 

2.1. Purpose and Objectives 

The unprecedented emergence of COVID-19 has emphasized the urgent need for innova-

tive strategies to mitigate its spread and impact. This thesis aims to leverage transfer learning tech-

niques, particularly in medical image analysis, to create a predictive model capable of distinguish-

ing between COVID-19 patients and healthy individuals. Utilizing Python and a dataset obtained 

from Kaggle containing diverse medical images, this study endeavors to enrich the repertoire of 

tools available for combatting the pandemic (Roy et al., 2022). 

The primary aim is to develop and assess a robust machine learning model proficient in 

identifying COVID-19 infected individuals based on medical imaging data. Through transfer learn-

ing, which involves adapting pre-existing models to novel tasks, the focus is on leveraging insights 

from established models trained on extensive datasets to enhance the predictive model's perfor-

mance. Key tasks include preprocessing medical images, fine-tuning pre-trained convolutional 

neural network (CNN) architectures, and evaluating the model's efficacy using appropriate metrics. 

Moreover, this research seeks to address specific sub-objectives within the broader framework of 

COVID-19 prediction using transfer learning methodologies. It aims to explore diverse CNN ar-

chitectures and transfer learning strategies to identify the most suitable approach for the task at 

hand. Additionally, the thesis endeavors to examine how dataset characteristics, such as image 

resolution and class distribution, impact the model's performance and its ability to generalize. Ef-

forts will also be directed towards optimizing hyperparameters and managing potential challenges 

like class imbalances to ensure the predictive model's robustness and reliability. Beyond the crea-

tion of the predictive model, this thesis aims to contribute to a deeper understanding of transfer 

learning applications in the medical field, particularly in infectious disease detection contexts. By 

elucidating the methodologies, challenges, and potential pitfalls associated with employing transfer 

learning for COVID-19 prediction, this research seeks to facilitate knowledge dissemination and 

inspire further exploration in this evolving area of study. 
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2.2. Overview of Transfer Learning 

Transfer learning stands as a cornerstone technique in both machine learning and deep 

learning, wherein insights gleaned from addressing one problem are applied to tackle another re-

lated challenge. Its utility shines particularly bright in scenarios marked by scarce data or domain-

specific intricacies. At the heart of transfer learning lie pre-trained models—neural network archi-

tectures honed on expansive datasets like ImageNet. Models such as EfficientNet, VGG, and Mo-

bileNet encapsulate fundamental features from diverse image categories, serving as foundational 

frameworks for subsequent customization to specific tasks. Fine-tuning emerges as a prevalent 

strategy within transfer learning, entailing the adjustment of pre-trained model parameters through 

additional training on a target dataset. This process enables the model to adapt its acquired repre-

sentations to the subtleties of the target task, thereby amplifying performance and enhancing its 

ability to generalize. Another avenue, feature extraction, involves capturing intermediate represen-

tations learned by pre-trained models and employing them as input features for a task-specific clas-

sifier. This methodology circumvents the need for extensive retraining while still leveraging the 

benefits of the acquired representations (Rahmani et al., 2022). The repertoire of transfer learning 

methodologies extends to domain adaptation, which focuses on tailoring models trained on one 

domain to effectively operate in another domain with distinct distributions. This proves invaluable 

when labeled data in the target domain is scarce or inaccessible. Meanwhile, multi-task learning 

facilitates concurrent model training on multiple interconnected tasks, enabling the model to lev-

erage shared knowledge and acquire task-specific insights more efficiently. This fosters resilience 

and adaptability across a spectrum of tasks. In the realm of predicting COVID-19 through medical 

image processing, transfer learning assumes paramount significance in elevating model perfor-

mance and scalability (Figure 2.1). By harnessing pre-trained models trained on expansive image 

datasets, researchers can extract meaningful features from medical images and discern patterns 

indicative of COVID-19 infection or health status. Moreover, transfer learning streamlines the de-

velopment of robust and interpretable models capable of accommodating variations in imaging 

protocols, equipment, and patient demographics. This paves the way for the deployment of depend-

able diagnostic tools for COVID-19 screening and patient management, thereby contributing to the 

global endeavor to combat the pandemic. As the field continues its evolution, transfer learning is 

poised to occupy an increasingly pivotal role in shaping the trajectory of medical imaging and 
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disease diagnosis (Mwaniki, 2023; Laddha et al., 2022). Figure 2.1 illustrates the impact of transfer 

learning in COVID-19 diagnosis. 

 

Figure 2.1. The impact of transfer learning in COVID-19 diagnosis 

2.3. Understanding Medical Imaging Data 

Medical imaging serves as a cornerstone in modern healthcare, providing clinicians with 

invaluable insights into internal structures and anomalies within the human body. Digital imaging 

technologies like X-ray, computed tomography (CT), magnetic resonance imaging (MRI), and pos-

itron emission tomography (PET) generate vast amounts of medical image data daily. Understand-

ing the intricacies of this data is essential for developing accurate predictive models for COVID-

19 using transfer learning techniques (Rudroff, 2024). 

These modalities offer distinct perspectives on anatomical and physiological structures. X-

ray imaging yields two-dimensional projections suitable for detecting lung abnormalities like pneu-

monia or COVID-19-associated lesions (Wibisono et al., 2019). CT scans provide cross-sectional 

images with higher resolution, allowing for detailed lung morphology visualization (Lu et al., 

2016). MRI offers detailed soft tissue images, valuable for assessing brain and musculoskeletal 

disorders (Soppari et al., 2024). PET imaging visualizes metabolic activity within tissues, aiding 

in disease diagnosis and staging (Hess et al., 2014). The sheer volume of data can overwhelm 

traditional computational methods. Variability in resolution, orientation, and contrast requires 
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preprocessing for standardization. Interpreting medical images demands domain-specific expertise 

to detect subtle abnormalities. Ensuring patient privacy and data security is crucial due to sensitive 

information contained in medical images (Shachar, 2024). 

Transfer learning offers a solution by leveraging pre-trained deep learning models for med-

ical imaging tasks. This technique adapts models trained on large-scale datasets to overcome limi-

tations of small and heterogeneous medical image datasets. In COVID-19 prediction, transfer learn-

ing enables the adaptation of pre-trained models to classify chest X-ray or CT images, accelerating 

model development and enhancing performance. TensorFlow, coupled with the Keras API, pro-

vides a flexible framework for implementing transfer learning in medical imaging. Keras simplifies 

model building and training with its high-level interface, ideal for rapid prototyping. TensorFlow's 

integration with Keras Applications grants access to pre-trained models like EfficientNet, VGG, 

and MobileNet. Fine-tuning these models on medical imaging datasets captures disease-specific 

features relevant to COVID-19 prediction. Extensive documentation and community support en-

sure developers have resources and guidance throughout the model development process (Chola et 

al., 2022). 

2.4. Challenges in COVID-19 Detection 

The outbreak of COVID-19 has posed unprecedented challenges to healthcare systems 

worldwide, highlighting the urgent need for swift and accurate diagnostic methods to curb its 

spread and impact. Despite advancements in medical imaging and machine learning, detecting 

COVID-19 remains a complex endeavor beset by numerous obstacles (see Table 2.1). We delve 

into these challenges and examine how transfer learning techniques, particularly employing Ten-

sorFlow with the Keras API, can offer solutions. One of the foremost hurdles in COVID-19 detec-

tion via medical imaging is the variability in image characteristics observed across different pa-

tients and imaging modalities. Images sourced from diverse origins may vary significantly in res-

olution, contrast, and noise levels, complicating the task for conventional machine learning algo-

rithms. Transfer learning, by harnessing pre-trained models and adapting them to new tasks, can 

mitigate this challenge. By assimilating meaningful representations from a wide array of image 

data, transfer learning enhances the resilience of detection models (Jafari et al., 2022). 
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Table 2.1. Comparison of model performance 

Model Type Accuracy Sensitivity Specificity Remarks 

Conventional ML High Moderate Moderate 
Limited by variability in im-

age features 

Transfer Learning Very High High High 
Enhanced resilience to image 

variability 

Another formidable challenge lies in the scarcity of labeled data for training deep learning 

models tailored to COVID-19 detection. Amassing large-scale annotated datasets for such imaging 

studies is arduous due to privacy constraints, access limitations, and the laborious nature of manual 

labeling. Here, transfer learning emerges as a beacon of hope. It facilitates the transfer of 

knowledge from pre-trained models trained on expansive datasets to the realm of COVID-19 de-

tection. Through fine-tuning on a smaller dataset of COVID-19 images, transfer learning enables 

the creation of precise and dependable detection models, even in the face of limited labeled data 

(Yang, 2024). 

Class imbalance and data skew pose additional hurdles in medical imaging datasets. The 

overrepresentation of one class, such as healthy patients, compared to another, like COVID-19 

positive patients, can bias models and lead to subpar performance, exacerbated by differences in 

data distribution between training and testing sets. Transfer learning methods, coupled with tech-

niques like data augmentation and class-weighted loss functions, offer remedies to these issues. By 

addressing class imbalance and data skew, transfer learning enhances the generalization perfor-

mance of detection models across various classes (Figure 2.2.).  
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Figure 2.2. Challenges in COVID-19 Detection via Medical Imaging 

Ensuring the interpretability and explainability of COVID-19 detection models is para-

mount, particularly in medical imaging applications where AI-driven decisions directly impact pa-

tient care (Röösli et al., 2022). Deep learning models, especially those trained using transfer learn-

ing, often exhibit intricate and opaque decision-making processes, complicating interpretation. 

Guaranteeing the interpretability and explainability of these models is essential to garner the trust 

of healthcare practitioners and seamlessly integrate them into clinical workflows. Techniques such 

as feature visualization, saliency mapping, and model explanation methods serve to enhance the 

interpretability of transfer learning-based detection models, empowering clinicians to comprehend 

and rely on their predictions (Nhlapho et al., 2024). 

2.5. Publicly Available Datasets for COVID-19 Chest X-ray Images 

The availability of publicly accessible datasets plays a pivotal role in advancing research 

endeavors, particularly in the domain of medical image analysis. Amidst the ongoing COVID-19 

pandemic, the demand for high-quality chest X-ray datasets for developing predictive models has 

surged. One of the notable datasets utilized in numerous studies is the dataset curated by Mrinal 

Tyagi et al. (2022). This dataset comprises chest X-ray images sourced from diverse medical insti-

tutions, encompassing a spectrum of COVID-19 cases along with other pathologies such as Nor-

mal, Lung Opacity (LO), and Viral Pneumonia (VP). The authors have meticulously balanced the 
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dataset by employing both under-sampling and over-sampling techniques, ensuring representative 

distribution across classes. Furthermore, the authors have applied novel image processing tech-

niques, including a Singular Value Decomposition (SVD)-based approach, to enhance the quality 

and diversity of images within the dataset. 

2.5.1. Ethical Considerations 

The use of medical data, including chest X-ray images, raises important ethical considera-

tions related to patient privacy, consent, and data security. Adhering to ethical guidelines and reg-

ulations is paramount to ensuring the responsible use of data and protecting the rights and confi-

dentiality of individuals involved. 

2.5.1.1. Patient Privacy 

Protecting patient privacy is a fundamental ethical principle in medical research and data 

science. Chest X-ray images may contain sensitive information about individuals' health status, 

demographics, and medical history. Therefore, it's essential to de-identify or anonymize the data 

to prevent the identification of individuals and minimize privacy risks. 

2.5.1.2. Informed Consent 

Obtaining informed consent from patients or participants is essential when using medical 

data for research purposes. Researchers must ensure that individuals understand the nature of the 

research, its potential risks and benefits, and how their data will be used and protected. Informed 

consent helps uphold autonomy and respect for individuals' rights and ensures transparency in the 

research process. 

2.5.1.3. Institutional Review Board (IRB) Approval 

Many research institutions require approval from an Institutional Review Board (IRB) or 

Ethics Committee before conducting research involving human subjects or medical data. The IRB 

evaluates research proposals to ensure compliance with ethical standards, patient safety, and regu-

latory requirements. Researchers must obtain IRB approval before collecting, analyzing, or sharing 

medical data to ensure ethical conduct and regulatory compliance (Wicks & Chiauzzi, 2019). 
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Authors of the dataset provided a citation requirement for the use of their dataset, indicating their 

intention to receive credit for their work.  

2.6. Preprocessing of Chest X-ray Images 

The preprocessing of chest X-ray images plays a crucial role in enhancing the quality and 

balance of the dataset, ensuring optimal performance of machine learning models for classification 

tasks. In this section, we delve into the preprocessing techniques employed by the authors to ad-

dress the imbalanced nature of the dataset and enhance its features. 

2.6.1. Dataset Overview 

The dataset utilized in this study comprises chest X-ray images collected from individuals 

diagnosed with Coronavirus disease (COVID-19), caused by the SARS-CoV-2 virus. This infec-

tious disease manifests with varying degrees of severity, with some individuals experiencing mild 

symptoms while others may develop serious respiratory complications. The dataset initially con-

sisted of four classes: Covid, Normal, Lung Opacity (LO), and Viral Pneumonia (VP), with varying 

numbers of images per class. 

2.6.2. Balancing the Dataset 

The original dataset exhibited significant class imbalance, with a disproportionate distribu-

tion of images across the different classes. To mitigate this issue, the authors employed a combi-

nation of under-sampling (Random Under-Sampling, RUS) and over-sampling (data augmenta-

tion) techniques through image processing methods. 

2.6.3. SVD-Based Image Processing 

A novel Singular Value Decomposition (SVD)-based image processing technique was em-

ployed specifically for the minor classes, VP and Covid. This technique aimed to generate synthetic 

images with slightly altered luminance and contrast characteristics, effectively augmenting the da-

taset and addressing the imbalance. 
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2.6.4. Contrast Limited Adaptive Histogram Equalization (CLAHE) 

To enhance the features of the entire dataset, Contrast Limited Adaptive Histogram Equal-

ization (CLAHE) with a parameter of 0.5 was applied uniformly across the images. Additionally, 

a value of 1.0 was selectively chosen for the VP class to prevent excessive contrast enhancement. 

This step ensured that the features extracted from the chest X-ray images were optimized for sub-

sequent analysis. 

2.6.5. Augmented Dataset Analysis 

In the augmented chest X-ray (CXR) dataset, the number of images per class varied slightly, 

reflecting the unique characteristics and distribution of images within each class. Notably, the 

Covid class exhibited significantly higher intra-class variance compared to other classes. Conse-

quently, a nuanced approach was adopted to determine the number of augmented images for this 

class, aiming for improved convergence of convolutional neural network (CNN) models. 

2.6.6. Intra-Class Variance Analysis 

The authors conducted a correlation coefficient analysis to quantify the mean intra-class 

variance for each class. This analysis informed the selection of the number of augmented images, 

ensuring a balance between class representation and intra-class variance. As a result, the augmented 

dataset achieved a more equitable distribution, facilitating robust model training and evaluation 

(Roy et al., 2022). 

2.7. Data Augmentation Techniques 

Data augmentation plays a pivotal role in enhancing the performance and robustness of 

machine learning models, particularly in scenarios where the available dataset is limited or imbal-

anced. In the context of this thesis, where I aimed to develop a model using transfer learning tech-

niques with medical images for identifying ill and healthy patients, employing effective data aug-

mentation techniques becomes imperative. Data augmentation involves artificially generating new 

training samples by applying a variety of transformations to existing data. This process not only 

increases the size of the dataset but also introduces diversity, thereby enabling the model to gener-

alize better to unseen data. In medical imaging tasks like mine, where obtaining labeled data is 
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often challenging and expensive, data augmentation becomes particularly crucial for training ac-

curate and robust models (Nair et al., 2024). Several techniques are commonly used in data aug-

mentation, including flip, scaling, shear, and zoom. Each technique introduces specific variations 

to the input data, thereby enriching the dataset with diverse examples for training. There are ad-

vantages of using them. Augmented data exposes models to a wider range of variations, enabling 

them to generalize better to unseen data and diverse real-world scenarios. Augmentation expands 

the dataset, providing more training examples for the model to learn from, which often leads to 

better performance, especially in scenarios with limited original data. By regularizing the model 

and preventing it from memorizing the training data, data augmentation helps mitigate overfitting, 

leading to models that generalize well to new data (Dai et al., 2022). 

Each data augmentation technique served a specific purpose in enhancing the model's learn-

ing process. For instance, rescaling normalized pixel values to ensure consistent feature scales 

across the dataset, while shear range and zoom range introduced variations in orientation and scale, 

respectively, augmenting the dataset with diverse examples. Horizontal flip added further variabil-

ity by flipping images horizontally, aiding the model in learning invariant features.  

2.7.1. Rescaling 

This technique involves resizing the input images uniformly by a certain factor. It's com-

monly used to normalize images to a standard size before feeding them into a neural network, 

which can improve training efficiency and convergence by reducing computational overhead and 

ensuring consistency in feature extraction across different resolutions. I applied rescaling to stand-

ardize the pixel values of the images between 0 and 1. This normalization step facilitated faster 

convergence during training and ensured numerical stability. 

2.7.2. Shear Range 

Shearing involves shifting one part of the image along a certain axis, creating a "stretching" 

effect. Shear range refers to the maximum angle or magnitude by which the image can be sheared. 

By applying shear transformations within a specified range, data augmentation can introduce var-

iability in object orientations, helping the model generalize better to variations in real-world sce-

narios, such as tilted or skewed objects. 
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2.7.3. Zoom Range 

Zoom range determines the extent to which the input image can be magnified or shrunk. 

During data augmentation, randomly zooming in or out on images helps simulate the effect of 

varying distances between the camera and objects in the scene. This can enhance the model's ability 

to recognize objects at different scales and improve its robustness to changes in perspective and 

viewing angles. 

2.7.4. Horizontal Flip 

This augmentation technique involves flipping images horizontally along the vertical axis. 

It's particularly useful for tasks where object orientation or left-right symmetries are not relevant, 

such as object classification. By introducing mirror images of the training data, the model learns to 

be invariant to horizontal flips, thereby enhancing its ability to generalize to unseen data and im-

proving overall performance (See Table 2.2). When implementing data augmentation techniques, 

it is essential to strike a balance between introducing sufficient diversity into the dataset and pre-

serving the integrity of the original images. Additionally, it is crucial to ensure that the augmented 

images remain clinically relevant and do not introduce artifacts or distortions that could compro-

mise the model's performance. Furthermore, the choice of data augmentation techniques should be 

guided by the specific characteristics of the medical imaging task at hand and the potential varia-

tions present in the dataset. Experimentation with different augmentation strategies and parameters 

is often necessary to determine the most effective augmentation pipeline for training the model 

(Dai et al., 2022). 

Table 2.2. Comparison of data augmentation techniques in medical image classification 

 

Data Augmentation 

Technique 
Purpose/Effect Implementation Details 

Rescaling Normalize images to a standard size 
Resize input images uniformly 

by a certain factor 

Shear Range 
Introduce variability in object orien-

tations 

Shift parts of the image along a 

certain axis 

Zoom Range 
Simulate varying distances between 

camera and objects 

Magnify or shrink input images 

randomly 
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Data Augmentation 

Technique 
Purpose/Effect Implementation Details 

Horizontal Flip 
Introduce mirror images for left-right 

invariance 

Flip images horizontally along 

the vertical axis 

 

2.8. Transfer Learning Setup 

Transfer learning has emerged as a powerful technique in the realm of machine learning, 

allowing models to leverage knowledge gained from one task to improve performance on another 

related task. At its core, transfer learning involves the reusability of knowledge or representations 

learned from a source domain to a target domain. This approach is particularly valuable when the 

target task has limited or insufficient labeled data for training a model from scratch. Transfer learn-

ing operates on the principle of transferring knowledge from a pre-trained model to a new task, 

thereby accelerating the learning process and potentially improving the performance of the target 

model (Fumagalli et al., 2020). In traditional machine learning approaches, models are trained from 

scratch on a specific dataset, requiring a substantial amount of labeled data and computational re-

sources. However, in transfer learning, instead of starting from random initialization, the model 

initializes with parameters learned from a related task or dataset. These pre-trained models have 

already learned meaningful representations from vast amounts of data and can effectively capture 

high-level features that are transferable across tasks. 

The significance of transfer learning lies in its ability to address the challenges of data scar-

city and domain shift commonly encountered in real-world applications. By leveraging pre-existing 

knowledge encoded in pre-trained models, transfer learning enables models to generalize better to 

new tasks and adapt more quickly to changes in the input distribution. This not only reduces the 

need for large labeled datasets but also enhances the robustness and scalability of machine learning 

systems (Wang & Chen, 2023). 

2.8.1. VGG16 

VGG16 stands as a testament to the expertise of the Visual Geometry Group at the Univer-

sity of Oxford, having played a pivotal role in securing victory during the intense competition of 

ImageNet in 2014. Widely hailed as a pinnacle achievement in vision model architectures, VGG16 
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boasts a meticulous design featuring thirteen convolutional layers, each intricately woven with 3 × 

3 filters and a stride of 1. It employs the technique of same padding to maintain spatial dimensions 

and integrates max pool layers with a 2 × 2 filter and a stride of 2, ensuring effective feature ex-

traction. This meticulous sequence of convolution and max pool layers remains consistent through-

out the architecture, showcasing a thoughtful approach to information processing. Furthermore, 

VGG16 is fortified with two fully-connected layers and a discerning output layer, culminating in a 

robust network architecture poised for diverse tasks. The journey of VGG16 through training was 

no small feat, traversing a vast dataset comprising 1.2 million images meticulously categorized into 

1,000 classes. Each iteration of training served to refine the network's understanding, honing its 

ability to discern patterns and features essential for accurate classification (Akinyelu & Blignaut, 

2022).  

2.8.2. InceptionV3 

InceptionV3, a prominent member of the inception family within the realm of convolutional neural 

network (CNN) architectures, stands out for its extensive depth, boasting a total of 48 layers. This 

architecture distinguishes itself by implementing various techniques to enhance performance and 

efficiency. For instance, it integrates label smoothing and an auxiliary classifier as forms of regu-

larization, ensuring stable training and robustness against overfitting. Moreover, the utilization of 

factorized 7x7 convolutions serves a dual purpose: it reduces the number of parameters required 

for the model while maintaining computational efficiency. One of the key innovations of Incep-

tionV3 lies in its architectural design, where batch normalization plays a crucial role. Positioned 

strategically between the auxiliary classifier and the fully-connected layer, batch normalization acts 

as an additional regularizer, contributing to the overall stability and convergence of the network. 

InceptionV3's prowess extends beyond its architectural intricacies; it has been pre-trained on the 

vast ImageNet dataset, a benchmark in image classification tasks. Through this pre-training pro-

cess, the network has acquired a rich understanding of visual features and patterns inherent in di-

verse images. Central to InceptionV3's architecture are its convolutions, which blend various kernel 

sizes (1x1, 3x3, and 5x5) with max pooling layers. This amalgamation results in a network capable 

of effectively capturing intricate details and hierarchical structures within images, facilitating ro-

bust and accurate classification (Akinyelu & Blignaut, 2022; Himel & Islam, 2024). 
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2.8.3. EfficientNet 

EfficientNet stands out as a highly efficient architecture for image classification, employing 

a unique approach known as compound scaling (Reza et al., 2021). Rather than independently ad-

justing depth, width, or resolution, EfficientNet strategically scales all three dimensions together, 

resulting in improved performance. This technique optimizes the network's depth, width, and res-

olution simultaneously, achieving superior accuracy and efficiency (Reza et al., 2021). 

Introduced in 2019, EfficientNet offers eight different versions varying in parameters and 

complexity. Modifications to its core layers enhance precision. Recent research has explored all 

eight models, often focusing on data preprocessing or adjustments to end layers for classification. 

The model's parameter reduction goal has prompted comparisons with other architectures, partic-

ularly in the context of COVID-19 detection systems. EfficientNet emerges as a promising candi-

date for comparison, potentially offering superior performance with fewer parameters compared to 

older, widely-used models (Mozaffari et al., 2023). 

2.8.4. MobileNet 

MobileNet stands out as an intricate neural network design meticulously crafted to cater to 

the constraints of mobile and embedded devices, ensuring efficient processing. Its innovation lies 

in the implementation of depth-wise separable convolution, a technique adept at diminishing com-

putational demands without compromising accuracy. This unique feature renders MobileNet ideal 

for real-time applications operating within the confines of limited computing resources (Himel & 

Islam, 2024). 

2.9. Architecture Design of CNN for COVID-19 Prediction 

Convolutional Neural Networks (CNNs) represent a class of deep learning models that ex-

cel in processing grid-like data, particularly images. Unlike traditional neural networks, CNNs lev-

erage convolutional and pooling layers to automatically learn and extract features from input im-

ages, making them highly suitable for image classification tasks. The core idea behind CNNs is 

inspired by the human visual system, where neurons in the visual cortex respond to specific stimuli 

within receptive fields. Similarly, in CNNs, each neuron in a convolutional layer is responsible for 

detecting particular features within its receptive field, which are then hierarchically combined to 
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form higher-level representations. The suitability of CNNs for image classification stems from their 

ability to capture spatial hierarchies of features. As information passes through successive layers 

of convolution and pooling, the network learns to identify low-level features such as edges and 

textures in the early layers, gradually progressing to more abstract and complex features in deeper 

layers. 

The components and layers of the model include convolutional layers, pooling layers, a 

flatten layer, and fully connected layers: 

Convolutional Layers: These layers are the building blocks of CNNs and play a fundamen-

tal role in feature extraction. A convolutional layer applies a set of learnable filters (also known as 

kernels) to the input image, performing a convolution operation. Each filter detects specific patterns 

or features within the input image by sliding over it and computing element-wise multiplications 

followed by summation. In the architecture designed for COVID-19 prediction, I employed three 

convolutional layers. The first layer consists of 32 filters, followed by 64 and 128 filters in the 

subsequent layers. Increasing the number of filters allows the network to capture increasingly com-

plex features as the information progresses through the layers. 

Pooling Layers: Pooling layers are used to reduce the spatial dimensions of the feature 

maps produced by the convolutional layers while retaining important information. The most com-

mon pooling operation is max-pooling, where the maximum value within each region of the feature 

map is selected. This downsampling operation helps in reducing computational complexity and 

controlling overfitting by providing a form of spatial hierarchy abstraction. In my CNN architec-

ture, max-pooling layers with a pool size of (2, 2) are inserted after each convolutional layer. This 

reduces the spatial dimensions of the feature maps by a factor of two along both the width and 

height dimensions, effectively reducing the number of parameters in subsequent layers. 

Flatten Layer: After the convolutional and pooling layers, the Flatten layer is used to con-

vert the two-dimensional feature maps into a one-dimensional vector. This transformation is nec-

essary to feed the output of the convolutional and pooling layers into the fully connected layers, 

which require one-dimensional input. 



35 

 

Fully Connected Layers: These layers are typical neural network layers where each neuron 

is connected to every neuron in the preceding and succeeding layers. Fully connected layers are 

responsible for learning global patterns and relationships in the extracted features. In my architec-

ture, I included a single dense layer with 128 neurons, followed by a dropout layer and a final dense 

layer with a single neuron for binary classification (COVID vs. non-COVID). The use of ReLU 

activation functions in the dense layers introduces non-linearity, allowing the model to learn com-

plex relationships between features. Additionally, dropout regularization is applied to the first 

dense layer with a dropout rate of 0.5 to prevent overfitting by randomly dropping out a fraction of 

the neurons during training. 

The design of CNN architectures for medical image analysis, particularly for COVID-19 

detection, requires special considerations due to the unique characteristics of medical imaging data. 

Below are the specific adaptations made to address these challenges. Medical images, such as X-

rays and CT scans, often come in various sizes and resolutions. However, for efficient processing 

and compatibility with pre-trained models, it is essential to standardize the input image dimensions. 

In my architecture, I set the input dimensions to 224x224 pixels, which is a common size used in 

many pre-trained CNN models trained on large-scale datasets like ImageNet. By resizing the im-

ages to a consistent size, I ensured that the CNN model can effectively learn and extract features 

from the input images without being influenced by variations in image dimensions. The choice of 

activation function in CNN architectures significantly impacts the model's ability to learn and gen-

eralize from the data. Rectified Linear Unit (ReLU) activation functions are commonly used in 

convolutional layers due to their simplicity and effectiveness in introducing non-linearity. ReLU 

activation functions replace negative pixel values with zero, effectively introducing a threshold 

below which the neuron is inactive. This helps in mitigating the vanishing gradient problem and 

accelerating the convergence of the training process. Overfitting is a common challenge in deep 

learning models, particularly when dealing with limited training data. Dropout regularization is a 

technique used to prevent overfitting by randomly deactivating a fraction of neurons during train-

ing. In my architecture, a dropout layer with a dropout rate of 0.5 is applied after the first fully 

connected layer. During training, each neuron in the dropout layer has a probability of 0.5 of being 

temporarily removed, forcing the network to learn more robust and generalizable features. 
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Transfer learning is a powerful technique in deep learning, where knowledge gained from 

training on one task is leveraged to improve performance on a different but related task. In the 

context of CNNs, transfer learning involves initializing the model with pre-trained weights ob-

tained from a large-scale dataset and fine-tuning the model on a new dataset specific to the target 

task. Transfer learning offers significant advantages in the realm of COVID-19 prediction using 

convolutional neural networks (CNNs). Firstly, it facilitates faster convergence during training by 

leveraging pre-trained models' learned representations from extensive datasets like ImageNet. 

These pre-trained weights provide the model with a starting point for learning relevant features for 

COVID-19 prediction, reducing training time and computational resources. Additionally, transfer 

learning enhances the model's generalization capabilities by allowing it to leverage knowledge ac-

quired from diverse images across different domains. Fine-tuning the pre-trained weights on the 

COVID-19 dataset is crucial for adapting the model's learned representations to capture specific 

features and patterns indicative of COVID-19 infection in medical images. This process improves 

the model's performance and robustness in accurately predicting COVID-19 cases from X-ray or 

CT scan images. The implementation of transfer learning can vary depending on factors such as 

the availability of labeled data and computational resources. In my architecture, I adopted a com-

mon transfer learning approach by utilizing pre-trained weights from established CNN architec-

tures like VGG, MobileNet, or Inception. Subsequently, I fine-tuned the model on the COVID-19 

dataset to optimize its performance for the specific prediction task at hand. 
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CHAPTER 3. IMPLEMENTATION AND TRAINING 

Fine-tuning pre-trained models represents a pivotal strategy in the domain of transfer learn-

ing, particularly when applied to tasks such as COVID-19 prediction using medical images. In this 

section, we delve into the definition, process, strategies, optimization techniques, considerations, 

and practical implementation aspects of fine-tuning pre-trained convolutional neural networks 

(CNNs) for COVID-19 prediction. 

Fine-tuning, within the context of transfer learning, embodies the process of adapting pre-

trained models to new tasks by adjusting their parameters. This process capitalizes on the 

knowledge encoded in the pre-trained weights, obtained from training on a large dataset for a re-

lated task, and tailors the model's parameters to suit the intricacies of the target task. Fine-tuning 

is essential for enabling the model to learn task-specific features while leveraging the wealth of 

information captured during pre-training (Ramdan et al., 2020). 

Adapting pre-trained CNNs for COVID-19 prediction encompasses several crucial steps: 

1. Network Architecture Modification: Fine-tuning often necessitates adjustments to the 

architecture of the pre-trained CNN to align with the specific requirements of the prediction 

task. This may entail modifying the number of layers, adding or removing convolutional or 

pooling layers, or altering the size of the fully connected layers (Kambale et al., 2024). The 

goal is to tailor the architecture to effectively extract relevant features from medical images for 

accurate prediction of COVID-19 status. 

2. Selection of Trainable Layers: Not all layers of the pre-trained CNN need to be fine-

tuned. Depending on the similarity between the pre-training task and the target task, only a 

subset of layers may be updated during fine-tuning. Typically, lower layers responsible for 

learning generic features, such as edges and textures, are frozen, while higher layers capturing 

more task-specific information, such as disease-related patterns, are fine-tuned to adapt to the 

COVID-19 prediction task. 

3. Adjustment of Hyperparameters: Fine-tuning also involves tuning hyperparameters 

such as learning rate, batch size, and dropout rate to optimize model performance on the target 
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task. Hyperparameter tuning is critical for achieving convergence during training and prevent-

ing issues such as underfitting or overfitting (Kambale et al., 2024). 

Several transfer learning strategies are commonly employed during the fine-tuning process: 

1. Freezing Early Layers: Freezing the early layers of the pre-trained CNN helps preserve 

generic features learned from the pre-training task. By keeping these layers fixed, the model 

can focus on learning task-specific features from the COVID-19 prediction dataset without 

overwriting the valuable representations captured in the lower layers. This prevents cata-

strophic forgetting and enables efficient transfer of knowledge from the pre-trained model. 

2. Fine-tuning Deeper Layers: Deeper layers of the pre-trained CNN, closer to the output 

layer, tend to capture more task-specific information relevant to COVID-19 prediction. Fine-

tuning these layers allows the model to adapt its representations to the nuances of the target 

task, thereby enhancing its predictive performance. Fine-tuning deeper layers enables the 

model to learn intricate patterns and correlations present in the COVID-19 dataset, leading to 

improved generalization and discriminative capability (Philippi et al., 2023). 

During fine-tuning, optimization algorithms are employed to update the parameters of the pre-

trained model and minimize the loss function. Common optimization techniques include: 

1. Stochastic Gradient Descent (SGD): SGD is a fundamental optimization algorithm 

used to iteratively update the model parameters based on the gradients computed from a random 

subset of training samples. While SGD is simple and computationally efficient, it may suffer 

from slow convergence or oscillations in the parameter space. Variants of SGD, such as mini-

batch SGD and momentum SGD, address some of these limitations and improve training sta-

bility. 

2. Adaptive Learning Rates: Adaptive learning rate algorithms, such as Adam and 

RMSprop, dynamically adjust the learning rate for each parameter based on past gradients. 

These algorithms adaptively scale the learning rates based on the magnitude and direction of 

the gradients, leading to faster convergence and improved generalization performance. Adam, 
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in particular, combines the advantages of adaptive learning rates and momentum to achieve 

superior optimization performance across a wide range of tasks (Ioannou et al., 2023). 

Fine-tuning pre-trained models for COVID-19 prediction poses several considerations and 

challenges: 

1. Overfitting: Fine-tuning on a small dataset may lead to overfitting, where the model 

memorizes noise in the training data rather than learning generalizable features. Regularization 

techniques such as dropout, weight decay, and early stopping are commonly employed to mit-

igate overfitting and improve the model's ability to generalize to unseen data. Additionally, 

techniques like data augmentation can help increase the diversity of the training data and pre-

vent overfitting by exposing the model to a broader range of variations. 

2. Domain Shift: Pre-trained models may have been trained on datasets with different char-

acteristics than the target COVID-19 prediction dataset. Domain adaptation techniques, such 

as domain adversarial training or domain-specific normalization layers, may be necessary to 

align the feature distributions between the source and target domains and prevent performance 

degradation due to domain shift. By minimizing the distribution discrepancy between the pre-

training and fine-tuning datasets, domain adaptation techniques enable the model to generalize 

better to the target task. 

3. Data Augmentation: Data augmentation techniques play a crucial role in enhancing the 

diversity of the training data and improving the model's robustness to variations in input im-

ages. Common data augmentation techniques include rotation, scaling, translation, flipping, 

and elastic deformation. By introducing variations in the training data, data augmentation helps 

expose the model to a broader range of visual cues and enhances its ability to learn invariant 

representations. However, care must be taken to ensure that augmented images remain clini-

cally relevant and do not introduce unrealistic distortions that could compromise the model's 

performance (Helander, 2021). 

Implementing fine-tuning for COVID-19 prediction entails several practical considerations: 
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1. Software Frameworks: Popular deep learning frameworks such as TensorFlow and 

PyTorch provide comprehensive APIs for fine-tuning pre-trained models. These frameworks 

offer high-level abstractions for building and training models, as well as efficient implementa-

tions of optimization algorithms and evaluation metrics. Leveraging pre-existing implementa-

tions of popular CNN architectures and fine-tuning strategies can significantly streamline the 

development process and accelerate model deployment (Rao, 2023).  

2. Computational Resources: Fine-tuning pre-trained models often requires significant 

computational resources, including powerful GPUs or TPUs for training and validation. Cloud 

computing platforms such as Google Cloud Platform (GCP) and Amazon Web Services (AWS) 

offer scalable infrastructure for running deep learning experiments and accessing specialized 

hardware accelerators. By provisioning resources on-demand and parallelizing computations 

across multiple devices, cloud-based environments enable researchers to train and evaluate 

complex models more efficiently (Arif, 2020). 

3. Data Management and Preprocessing: Managing and preprocessing the COVID-19 

prediction dataset is a critical aspect of fine-tuning pre-trained models. This may involve tasks 

such as data cleaning, normalization, and augmentation to ensure the dataset is well-structured 

and representative of the target task. Tools and libraries for data manipulation and prepro-

cessing, such as pandas, NumPy, and OpenCV, can facilitate these tasks and streamline the 

data pipeline (Singh, 2022). Additionally, storing and versioning the dataset using platforms 

like Google Cloud Storage or AWS S3 ensures data integrity and reproducibility across exper-

iments (Ferrua, 2023). 

4. Model Evaluation and Validation: Evaluating the performance of fine-tuned models 

on the COVID-19 prediction task requires careful design and execution of validation experi-

ments. This involves splitting the dataset into training, validation, and test sets, selecting ap-

propriate evaluation metrics, and conducting cross-validation to assess model generalization 

(See Figure 3.1.). Techniques such as k-fold cross-validation and stratified sampling help mit-

igate the effects of data imbalance and ensure robust performance estimation. Furthermore, 

visualizing model predictions and diagnostic metrics using tools like Matplotlib or 
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TensorBoard aids in interpreting model behavior and identifying areas for improvement 

(Mekruksavanich & Jitpattanakul, 2022; Abu Lekham et al., 2022). 

My model performs image data preprocessing using ImageDataGenerator to prepare the data 

for training and testing. This includes: 

• Rescaling: Both the training and testing datasets are rescaled by a factor of 1/255 to nor-

malize the pixel values. 

• Training Augmentation: Transformations like shearing (with a shear range of 0.2), zoom-

ing (with a zoom range of 0.2), and horizontal flipping are applied to artificially increase 

the training data size and improve model robustness. Data augmentation is skipped during 

testing to ensure a more realistic evaluation of the model's ability to handle unseen data. 

Augmenting test data might introduce variations not present in real-world images, poten-

tially biasing the results. This step helps focus on the model's ability to generalize to new 

examples. 

 

Figure 3.1. Preparation of dataset 
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3.1. Training Process  

Transfer learning is a potent method within the realm of deep learning, wherein insights 

gleaned from addressing one problem are employed to tackle another problem that shares a similar 

context. Specifically concerning image classification endeavors, transfer learning entails utilizing 

pre-existing convolutional neural network (CNN) models that have been trained on extensive da-

tasets like ImageNet. These models are then adjusted to suit a fresh task with a more limited dataset. 

Within this section, I detailed the application of transfer learning utilizing four well-known pre-

trained models: VGG16, EfficientNet, InceptionV3, and MobileNet. 

Before delving into the specifics of implementation, it's vital to carefully select the most suita-

ble pre-trained models for the given task. The decision on which pre-trained models to utilize 

hinges on several factors such as the task's complexity, available computational resources, and the 

size of the dataset at hand. In this particular implementation, I've opted for four widely recognized 

pre-trained models: 

1. VGG16: Renowned for its simplicity and efficacy, VGG16 comprises 16 convolutional 

layers and demonstrates remarkable performance across various image classification tasks. 

2. EfficientNet: EfficientNet implements compound scaling, strategically adjusting depth, 

width, and resolution together, leading to improved accuracy and efficiency in image classifi-

cation tasks. 

3. InceptionV3: InceptionV3 adopts a more intricate architecture featuring inception mod-

ules, aiding in capturing spatial hierarchies of features across diverse scales. 

4. MobileNet: Tailored for mobile and embedded vision applications, MobileNet offers a 

lightweight architecture well-suited for environments with constrained resources. 

 

Figure 3.2 illustrates the main components and interactions of the CNN models developed 

for COVID-19 prediction using transfer learning. It outlines data preparation, model training, eval-

uation, and visualization stages. 
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Figure 3.2. Model Architecture Diagram 

 

To implement transfer learning, I leveraged the pre-trained models provided by the Keras 

library, which are already trained on the ImageNet dataset. Using Keras, I imported the pre-trained 

models while excluding the fully connected layers (top layers) to obtain the convolutional base of 

each model. This is achieved by setting the include_top parameter to False during model instanti-

ation (see Figure 3.3.). 

 

Figure 3.3. Model Import and Configuration 

By setting include_top=False, I discarded the fully connected layers, as they are specific to 

the original ImageNet classification task and not relevant to the new task. 
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In order to maintain the learned representations within the convolutional base unaltered 

throughout the training process, I opted to freeze the weights of these layers. By freezing the con-

volutional base, I exclusively trained the newly added classifier layers atop the pre-trained models. 

This approach serves to minimize computational expenses and mitigate overfitting, particularly 

when confronted with restricted data (Figure 3.4.). 

 

Figure 3.4. Freezing Convolutional Bases 

 

By setting trainable=False, the weights of the convolutional layers are not updated during 

the training process. 

Once the pre-trained models have been imported and configured, I proceeded to build new 

models atop the convolutional bases by incorporating supplementary layers customized for my 

particular classification objective. This typically entails flattening the convolutional base's output 

and appending one or more dense layers, culminating in a final output layer equipped with an 

appropriate activation function (Figure 3.5.). The Flatten layer acts as a bridge between the pre-

trained convolutional layers and the fully-connected layers in my model. Convolutional layers typ-

ically output data in the form of 3D tensors with width, height, and depth channels. Each channel 

represents a specific feature extracted from the image. The Flatten layer takes this 3D tensor and 

transforms it into a single, 1D vector. This essentially reshapes all the extracted features from the 

convolutional layers into a long list of values. This step is necessary because fully-connected lay-

ers, unlike convolutional layers, can only process 1D vectors as input. 

Dense Layer (128 Neurons, ReLU Activation) marks the beginning of the fully-connected 

part of my model. It's the first Dense layer, containing 128 neurons and using a ReLU activation 
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function. We can call this the first hidden layer because it sits between the input (pre-trained fea-

tures) and the output layers. The 128 neurons allow the model to learn complex, non-linear rela-

tionships between the features extracted by the VGG16 model and the COVID classification task.  

Imagine these neurons as working together to recognize intricate patterns in the features that dif-

ferentiate COVID from non-COVID images. The ReLU activation function plays a crucial role 

here. It introduces non-linearity into the model, allowing it to go beyond simple linear combina-

tions of features. This is essential for capturing the complex relationships between features and 

ultimately achieving accurate classification. 

The Dropout layer plays a vital role in preventing overfitting during training. Overfitting 

happens when a model memorizes the training data too well, including noise and irrelevant details. 

This can lead to poor performance on unseen data. Dropout helps address this by randomly drop-

ping 50% of the neurons during training. Think of it as forcing the model to learn using a different 

set of features each time it sees a training image. This prevents any individual neuron from becom-

ing overly reliant on specific features and encourages the model to learn more robust features that 

generalize well to unseen data. 

Dense Layer (1 Neuron, Sigmoid Activation) is the final layer of my model, responsible for 

making the classification prediction. It has only one neuron and uses a sigmoid activation function. 

The single neuron reflects the binary nature of the classification task -  the model needs to predict 

whether an image belongs to the COVID class or not. The sigmoid activation function ensures the 

output of this layer is a value between 0 and 1.  A value closer to 1 signifies a higher probability of 

the image containing COVID, while a value closer to 0 suggests a lower probability. In essence, 

this layer interprets the features learned by the previous layers and outputs a probability score rep-

resenting the likelihood of COVID in the image. 
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Figure 3.5. Model Architecture Modification 

In the provided code excerpt, I assembled a sequence consisting of a flatten layer followed 

by a dense layer employing ReLU activation and dropout regularization. Subsequently, I appended 

another dense layer featuring sigmoid activation, suitable for binary classification tasks. The quan-

tity of units within the dense layer (in this instance, set at 128) is subject to modification depending 

on the task's intricacy and the dataset's scale. ReLU is used in the hidden layers (Dense layers with 

128 units) of the model. ReLU allows the model to learn non-linear relationships between features. 

It's computationally efficient and works well in many cases. Sigmoid is used in the final output 

layer (Dense layer with 1 unit) because it performs binary classification (COVID vs non-COVID). 

Sigmoid squashes the output between 0 and 1, which can be interpreted as the probability of an 

image belonging to the COVID class. Once the models have been assembled, I proceeded to com-

pile them, employing suitable optimizers, loss functions, and evaluation metrics, prior to initiating 

training on the dataset. The selection of optimizer and loss function hinges on the task's nature 

(such as binary classification or multi-class classification) and the dataset's attributes (Figure 3.6.). 
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Figure 3.6. Compilation and Training 

After compilation, the models are trained using the fit method, where I provided the training 

dataset along with relevant hyperparameters such as batch size and number of epochs (Figure 3.7.). 

 

Figure 3.7. Training of models 

3.1.1. Architecture of Models Built on Pre-trained Models 

Transfer learning encompasses the process of constructing new models atop pre-trained 

convolutional neural network (CNN) models, augmenting them with additional layers tailored to 

the particular task at hand. In this section, I delineated the architecture of the models developed on 

the foundation of the pre-trained models (VGG16, EfficientNet, InceptionV3, MobileNet) for my 

COVID vs. non-COVID classification task. Each model comprises two primary elements: the con-

volutional base (pre-trained model) and the custom classifier layers designed for the binary classi-

fication task. 

The convolutional base functions as the feature extractor, utilizing learned representations 

from extensive datasets to extract significant features from input images. While the pre-trained 

models (VGG16, EfficientNet, InceptionV3, MobileNet) exhibit diverse architectures, they share 

common elements such as convolutional layers, pooling layers, and activation functions. These 

components play a crucial role in capturing hierarchical features at various levels of abstraction. 
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Atop the convolutional base, I integrated custom classifier layers tailored specifically for 

the binary classification task, distinguishing between COVID and non-COVID chest X-ray images. 

These specialized layers comprise dense (fully connected) layers followed by an output layer fea-

turing a sigmoid activation function designed for binary classification. 

The model utilizing the VGG16 architecture involves the VGG16 convolutional base fol-

lowed by a flattening layer, converting 3D feature maps into a 1D feature vector. Subsequently, a 

dense layer employing ReLU activation, housing 128 units to capture intricate patterns within the 

extracted features, is introduced. To address overfitting, a dropout layer with a dropout rate of 0.5 

is incorporated after the dense layer. Finally, a dense output layer featuring a single unit and sig-

moid activation is appended for binary classification. 

In the case of the EfficientNet-based model, it follows a comparable structure to the VGG16 

model, with EfficientNet serving as the convolutional base. Following the flattening of feature 

maps, a dense layer employing ReLU activation with 128 units is added, accompanied by a dropout 

layer for regularization purposes. The model is finalized with a dense output layer featuring sig-

moid activation for binary classification. 

The InceptionV3 model utilizes the InceptionV3 convolutional base, integrating inception 

modules for efficient feature extraction. After flattening the feature maps, a dense layer employing 

ReLU activation with 128 units is introduced, followed by dropout for regularization. The final 

layer consists of a dense output layer featuring sigmoid activation for binary classification. 

As for the MobileNet-based model, it leverages the lightweight MobileNet architecture, 

suitable for environments with limited resources. Similar to the other models, a dense layer with 

ReLU activation and 128 units is added on top of the flattened feature maps, followed by dropout 

for regularization. The model concludes with a dense output layer featuring sigmoid activation for 

binary classification. 

3.1.2. Training Process with Data Preprocessing and Augmentation 

The training phase is pivotal for the effectiveness of deep learning models, encompassing 

various stages such as data preprocessing and augmentation, model training, and evaluation. This 

section delves into the training process for the models constructed atop the pre-trained models 

(VGG16, EfficientNet, InceptionV3, MobileNet) for my COVID vs. non-COVID classification 

task. 
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Data preprocessing stands as a crucial step in preparing the input data for training. In the 

realm of image classification tasks, preprocessing commonly involves resizing, normalization, and, 

if deemed necessary, augmentation. Data augmentation serves as a technique aimed at artificially 

enriching the diversity of the training dataset by applying random transformations to input images. 

This approach helps forestall overfitting while enhancing the model's capacity for generalization. 

Following the completion of data preprocessing and augmentation, the models undergo 

training on the augmented training dataset. Throughout this training phase, the model acquires the 

ability to associate input images with their corresponding labels (COVID or non-COVID) by ad-

justing the weights of both the convolutional base and custom classifier layers based on the training 

data. 

Batch Training: The training dataset is segmented into batches of a predefined size (for 

example, 32 images per batch), and the model receives updates after processing each batch. This 

batch training methodology aids in stabilizing the training process and facilitates efficient utiliza-

tion of computational resources. 

Epochs: Training progresses through multiple epochs, with each epoch representing a com-

plete traversal of the entire training dataset. Through successive epochs, the model incrementally 

enhances its performance and learns to generalize from the training data to unseen data. 

Evaluation metrics typically encompass accuracy, loss, precision, recall, and F1-score, fur-

nishing insights into the model's classification performance and resilience. 

3.1.3. Model Compilation: Optimizer, Loss Function, and Evaluation Metrics 

Compiling the model constitutes a pivotal phase in the training regimen of deep learning 

models. This step entails setting up the model for training by delineating the optimizer, loss func-

tion, and evaluation metrics. Within this section, we will delve into the compilation of the models 

constructed atop the pre-trained models (VGG16, EfficientNet, InceptionV3, MobileNet) for my 

COVID vs. non-COVID classification task. 

The optimizer oversees the adjustment of model parameters throughout training to diminish 

the loss function. Opting for a suitable optimizer substantially influences the speed of convergence 

and the stability of the training procedure. Frequently employed optimizers comprise Adam, 

RMSprop, and SGD (Stochastic Gradient Descent). Adam stands as an adaptive learning rate 
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optimization algorithm, calculating distinct adaptive learning rates for various parameters. It amal-

gamates the strengths of AdaGrad and RMSprop, rendering it apt for diverse deep learning endeav-

ors. 

The loss function evaluates the variance between the predicted outputs generated by the 

model and the actual labels within the training dataset. The selection of the loss function hinges on 

the task's characteristics, be it binary classification, multi-class classification, or regression. In bi-

nary classification scenarios, binary cross-entropy typically finds application. Binary cross-en-

tropy, also referred to as log loss, serves as a prevalent loss function in binary classification tasks. 

It quantifies the disparity between the predicted probability distribution and the actual distribution 

of binary outcomes. Essentially, it imposes a greater penalty on the model for predicting probabil-

ities that substantially deviate from the true labels. 

With the choice of optimizer, loss function, and evaluation metrics determined, I compiled 

the models using the compile method provided by Keras. This prepares the models for training by 

configuring them with the specified optimization algorithm, loss function, and evaluation metrics. 

3.1.4. Training Hyperparameters: Number of Epochs and Other Settings 

Hyperparameters are parameters whose values are established prior to the initiation of the 

training process and persist unchanged throughout training. They wield significant influence over 

the performance and convergence of deep learning models.  

1. Number of Epochs: 

Setting: 5 epochs were tested for each, plus 10 epochs were tested for the EfficientNet 

model. 

Importance: Balances between underfitting and overfitting. 

2. Batch Size: 

Setting: Used a batch size of 32. 

Importance: Balances between convergence speed and model stability. 

3. Learning Rate: 

Setting: Default learning rate provided by the Adam optimizer. 
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Importance: Controls the step size of parameter updates during training. 

4. Early Stopping (for EfficientNet with 10 epochs): 

Setting: Employed with a patience of 3 epochs. 

Importance: Prevents overfitting by stopping training when validation performance de-

grades. 

5. Data Augmentation Parameters: 

Setting: Rescaling, shear range of 0.2, zoom range of 0.2, and horizontal flipping. 

Importance: Increases diversity and realism of the training dataset. 

 

3.2. Introduction to Evaluation Methodology 

The aim of this chapter is to outline the methodology employed to evaluate the performance 

of deep learning models for COVID-19 detection using chest X-ray images. This section provides 

an overview of the evaluation metrics utilized and the experimental setup employed for model 

evaluation. 

3.3. Evaluation Metrics 

In assessing the effectiveness of the trained models, several key evaluation metrics were con-

sidered: 

• Accuracy: The proportion of correctly classified images out of the total number of images. 

• Precision: The ratio of true positive predictions to the total number of positive predictions. 

• Recall: The ratio of true positive predictions to the total number of actual positive instances. 

• F1 Score: The harmonic mean of precision and recall, providing a balanced measure be-

tween the two. 

• Confusion Matrix: A table illustrating the performance of the classification model, show-

casing true positives, true negatives, false positives, and false negatives. 
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3.4. Experimental Setup 

The evaluation was conducted on a Google Colab environment due to its provision of GPU 

support for accelerated computation. The dataset utilized for training and testing was sourced from 

Kaggle, consisting of chest X-ray images categorized into COVID and Normal classes. To facilitate 

experimentation, the dataset was split into separate training and testing subsets. 

The experimental setup involved: 

• Utilization of a 64-bit operating system with an x64-based processor. 

• A notebook equipped with 16GB of RAM. 

• Processor: Samsung 400B Portable Notebook, Intel Core i5 @ 2.50GHz. 

• Data preprocessing to normalize pixel values and augment the training dataset. 

• Training and evaluation of four deep learning models: VGG16, EfficientNet, InceptionV3, 

and MobileNet. 

3.5. Evaluation Procedure 

The evaluation procedure encompassed the following steps: 

• Loading and preprocessing of the test dataset. 

• Evaluation of each model's performance on the test dataset. 

• Calculation of evaluation metrics including accuracy, precision, recall, and F1 score. 

• Visualization of evaluation results through confusion matrices and accuracy plots. 
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CHAPTER 4. RESULTS AND DISCUSSION 

This chapter presents the outcomes of the evaluation conducted on four deep learning mod-

els for COVID-19 detection using chest X-ray images. The models evaluated include VGG16, In-

ceptionV3, MobileNet, and EfficientNet. 

4.1. InceptionV3 Model Results 

The InceptionV3 model achieved a test accuracy of 93.13%. It demonstrated a precision of 

48% for COVID cases and 51% for non-COVID cases. The recall rate was 48% for COVID cases 

and 52% for non-COVID cases. In the confusion matrix for the InceptionV3 model, out of 1749 

actual non-COVID cases, 909 were correctly predicted as non-COVID, and out of 1643 actual 

COVID cases, 786 were accurately classified as COVID (Table 4.1. & Table 4.2. & Figure 4.1.). 

Table 4.1. InceptionV3 model results             Table 4.2. Confusion matrix of InceptionV3 

 

 

 

 

 

 

 

 

Predicted 

Non-

COVID 

Predicted 

COVID 

Actual Non-

COVID 
909 840 

Actual 

COVID 
857 786 

Metric Value 

Test Accuracy 93.13% 

Precision (COVID) 48% 

Precision (Non-COVID) 51% 

Recall (COVID) 48% 

Recall (Non-COVID) 52% 
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Figure 4.1. InceptionV3 model accuracy 

 

4.2. VGG16 Model Results 

Evaluation of the VGG16 model resulted in a test accuracy of 96.40%. It exhibited a preci-

sion of 50% for COVID cases and 53% for non-COVID cases. The recall rate was 51% for COVID 

cases and 52% for non-COVID cases. The confusion matrix revealed that out of 1749 actual non-

COVID cases, 917 were correctly predicted, and out of 1643 actual COVID cases, 830 were accu-

rately classified (Table 4.3. & Table 4.4. & Figure 4.2.). 
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Table 4.3. VGG16 model results                 Table 4.4. Confusion matrix of VGG16 

 

 

Figure 4.2. VGG16 model accuracy 

 

4.3. MobileNet Model Results 

The MobileNet model achieved the highest test accuracy among all models, with an accu-

racy of 96.79%. It demonstrated balanced precision for both COVID (50%) and non-COVID (53%) 

cases, along with balanced recall rates of 51% for COVID cases and 52% for non-COVID cases. 

 

Predicted 

Non-

COVID 

Predicted 

COVID 

Actual Non-

COVID 
917 832 

Actual 

COVID 
813 830 

Metric Value 

Test Accuracy 96.40% 

Precision (COVID) 50% 

Precision (Non-COVID) 53% 

Recall (COVID) 51% 

Recall (Non-COVID) 52% 
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From the confusion matrix, it's evident that out of 1749 actual non-COVID cases, 917 were cor-

rectly predicted, and out of 1643 actual COVID cases, 830 were accurately classified (Table 4.5. 

& Table 4.6. & Figure 4.3.). 

Table 4.5. MobileNet model results                Table 4.6. Confusion matrix of MobileNet  

 

 

 

 

 

 

 

Figure 4.3. MobileNet model accuracy 

4.4. EfficientNet Model Results (5 Epochs vs 10 Epochs) 

 Evaluation of the EfficientNet model resulted in a test accuracy of 52%. In an additional 

evaluation with 10 epochs, the EfficientNet model maintained a test accuracy of 52% classified 

(Table 4.7. & Table 4.8. & Figure 4.4.). 

 

Predicted 

Non-

COVID 

Predicted 

COVID 

Actual Non-

COVID 
917 832 

Actual 

COVID 
813 830 

Metric Value 

Test Accuracy 96.79% 

Precision (COVID) 50% 

Precision (Non-COVID) 53% 

Recall (COVID) 51% 

Recall (Non-COVID) 52% 
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Table 4.7. EfficientNet model results            Table 4.8. Confusion matrix of EfficientNet 

 

  

 

 

 

Figure 4.4. Efficient model accuracy 

Note that the "Additional Epochs" column is applicable only for the EfficientNet model 

(Table 4.9.). 

 

Metric Value 

Test Accuracy (5 Epochs) 52% 

Test Accuracy (10 

Epochs) 

52% 

Precision (COVID) 0% 

Precision (Non-COVID) 100% 

Recall (COVID) 0% 

Recall (Non-COVID) 100% 

 

Predicted 

Non-

COVID 

Predicted 

COVID 

Actual 

Non-

COVID 

1749 0 

Actual 

COVID 
1643 0 
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Table 4.9. Summarization of results 

Here's a summary of the model compilation details, including the trainable parameters, loss 

function, optimizer, learning rate, batch size, number of epochs, training accuracy, validation ac-

curacy, and test accuracy. This table serves as a reference point for understanding the architectural 

complexities and performance characteristics of each model (Table 4.10.). 

Table 4.10. Model compilation 

Model 

Trainable 

Parame-

ters 

Loss 

Function 

Opti-

mizer 

Learn-

ing Rate 

Batch 

Size 
Epochs 

Training 

Accu-

racy 

Valida-

tion 

Accu-

racy 

Test 

Accu-

racy 

VGG16 14,714,688 

Binary 

Cross-

entropy 

Adam 0.001 32 5 0.93 0.96 0.96 

Incep-

tionV3 
23,851,784 

Binary 

Cross-

entropy 

Adam 0.001 32 5 0.88 0.93 0.93 

MobileNet 3,538,984 

Binary 

Cross-

entropy 

Adam 0.001 32 5 0.92 0.97 0.97 

Efficient-

Net (5 

epochs) 

5,330,569 

Binary 

Cross-

entropy 

Adam 0.001 32 5 0.52 0.52 0.52 

Efficient-

Net (10 

epochs) 

5,330,569 

Binary 

Cross-

entropy 

Adam 0.001 32 10 0.50 0.52 0.52 

Model 

Test 

Accu-

racy 

Precision 

(COVID) 

Preci-

sion 

(Non-

COVID) 

Recall 

(COVID) 

Recall 

(Non-

COVID) 

Addi-

tional 

Epochs 

InceptionV3 93% 48% 51% 48% 52%  

VGG16 96% 50% 53% 51% 52%  

MobileNet 97% 50% 53% 51% 52%  

EfficientNet 52% 0% 100% 0% 100% 52% 
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4.5. DISCUSSION 

In my thesis, I delved into the effectiveness of various pre-trained deep learning models, 

including VGG16, InceptionV3, MobileNet, and EfficientNet, for automating the identification of 

COVID-19 from chest X-ray images. The insights gleaned from my results shed light on how 

transfer learning methodologies perform in the realm of COVID-19 detection. The evaluation of 

the proposed model's performance against established benchmarks demonstrates notable improve-

ments in several instances. 

The performance of my MobileNet model, achieving an accuracy of 96.79%, exceeds the re-

sults of numerous models across different studies and configurations. Specifically, my MobileNet 

outperforms: 

1. ResNet50's results (95%) from Constantinou et al. (2023). 

2. ResNet101's results (96%) from Constantinou et al. (2023). 

3. DenseNet121's results (93%) from Constantinou et al. (2023). 

4. DenseNet169's results (94%) from Constantinou et al. (2023). 

5. InceptionV3's results (95%) from Constantinou et al. (2023). 

6. COVID-Net (93%) from Sarp et al. (2023). 

7. MobileNet (86.60%) from Arora et al. (2021). 

8. ResNet50 (82.60%) from Arora et al. (2021). 

9. VGG16 (86.60%) from Arora et al. (2021). 

10. InceptionV3 (89.30%) from Arora et al. (2021). 

11. XceptionNet (85.30%) from Arora et al. (2021). 

12. ViT (80.02%) from Zhang and Yuan (2022). 

13. ResNet50V2 with flatten layer's results (91.85%) from Zhang and Yuan (2022). 

14. ResNet50V2 2D globalAvgPooling's results (92.49%) from Zhang and Yuan (2022). 

15. ResNet50V2 2D globalMaxPooling's results (93.96%) from Zhang and Yuan (2022). 

16. ResNet152V2's results (90.78%) from Zhang and Yuan (2022). 

17. MobileNetV2's results (90.38%) from Zhang and Yuan (2022). 

18. InceptionResnetV2 (93.13%) from Zhang and Yuan (2022). 

19. VGG19 with flatten layer (93.46%) from Zhang and Yuan (2022). 

20. VGG19 2D globalAvgPooling (93.29%) from Zhang and Yuan (2022). 

21. VGG19 2D globalMaxPooling (94.12%) from Zhang and Yuan (2022). 
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22. VGG-16 (95.88%) from Lawton and Viriri (2021). 

23. nCoV-Net (80.00% to 82.00%) from Çağın et al. (2021). 

24. VGG16's results (94%) from Halder and Datta (2021). 

25. MobileNet's results (95%) from Halder and Datta (2021). 

26. DenseNet121's results (95.84%) from Agrawal et al. (2023). 

27. Xception's results (95.52%) from Agrawal et al. (2023). 

28. COVID-Net's results (95.68%) from Agrawal et al. (2023). 

29. All configurations from Duong et al. (2023) (highest 96.64%). 

30. ResNet101's results (95.98%) from Ramachandran (2021). 

In contrast, the EfficientNet model, with an accuracy of 52%, did not surpass the performance 

of any models listed in the comparison studies. For the VGG16 model, which achieved an accuracy 

of 96.40%, the results also show significant improvement over several benchmarks: 

1. DenseNet121 (93%) from Constantinou et al. (2023). 

2. DenseNet169 (94%) from Constantinou et al. (2023). 

3. ResNet50's results (95%) from Constantinou et al. (2023). 

4. InceptionV3's results (95%) from Constantinou et al. (2023). 

5. MobileNet's results (95%) from Halder and Datta (2021). 

6. InceptionV3 (91%) from Sarp et al. (2023). 

7. MobileNet (86.60%) from Arora et al. (2021). 

8. ResNet50 (82.60%) from Arora et al. (2021). 

9. VGG16 (86.60%) from Arora et al. (2021). 

10. InceptionV3 (89.30%) from Arora et al. (2021). 

11. XceptionNet (85.30%) from Arora et al. (2021). 

12. VGG19 with flatten layer (93.46%) from Zhang and Yuan (2022). 

13. VGG19 2D globalAvgPooling (93.29%) from Zhang and Yuan (2022). 

14. VGG19 2D globalMaxPooling (94.12%) from Zhang and Yuan (2022). 

15. ResNet50V2 with flatten layer (91.85%) from Zhang and Yuan (2022). 

16. ResNet50V2 2D globalAvgPooling (92.49%) from Zhang and Yuan (2022). 

17. ResNet50V2 2D globalMaxPooling (93.96%) from Zhang and Yuan (2022). 

18. ViT (80.02%) from Zhang and Yuan (2022). 

19. MobileNetV2 (90.38%) from Zhang and Yuan (2022). 
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20. InceptionResnetV2 (93.13%) from Zhang and Yuan (2022). 

21. ResNet152V2 (90.78%) from Zhang and Yuan (2022). 

22. VGG16 (94%) from Halder and Datta (2021). 

23. VGG-16 (95.88%) from Lawton and Viriri (2021). 

24. DenseNet121 (95.84%) from Agrawal et al. (2023). 

25. Xception (95.52%) from Agrawal et al. (2023). 

26. COVID-Net (95.68%) from Agrawal et al. (2023). 

27. ResNet101 (95.98%) from Ramachandran (2021). 

28. nCoV-Net (80.00% to 82.00%) from Çağın et al. (2021). 

Similarly, the InceptionV3 model, achieving an accuracy of 93.13%, demonstrated superior 

performance compared to: 

1. MobileNet (86.60%) from Arora et al. (2021). 

2. ResNet50 (82.60%) from Arora et al. (2021). 

3. VGG16 (86.60%) from Arora et al. (2021). 

4. DenseNet121's results (93%) from Constantinou et al. (2023). 

5. InceptionV3 (89.30%) from Arora et al. (2021). 

6. XceptionNet (85.30%) from Arora et al. (2021). 

7. ViT (80.02%) from Zhang and Yuan (2022). 

8. ResNet50V2 with flatten layer's results (91.85%) from Zhang and Yuan (2022). 

9. ResNet50V2 2D globalAvgPooling's results (92.49%) from Zhang and Yuan (2022). 

10. ResNet152V2's results (90.78%) from Zhang and Yuan (2022). 

11. MobileNetV2's results (90.38%) from Zhang and Yuan (2022). 

12. nCoV-Net (80.00% to 82.00%) from Çağın et al. (2021). 

These comparisons underscore the robustness and efficiency of my models, particularly the 

MobileNet, VGG16, and InceptionV3 architectures, in achieving higher accuracies compared to a 

range of existing models documented in various studies. The consistent outperformance across 

different datasets and benchmarks highlights the potential of my models for practical applications 

in image recognition and classification tasks. 
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4.6. ADVANTAGES AND DISADVANTAGES 

Let's explore the advantages of transfer learning in predicting COVID-19. Transfer learning 

offers a range of benefits that contribute to the development of accurate and reliable models for 

COVID-19 diagnosis from chest X-ray images. Firstly, it significantly reduces training time. Train-

ing deep learning models from scratch on large datasets can be time-consuming and computation-

ally expensive. However, transfer learning mitigates this challenge by leveraging pretrained mod-

els, such as those trained on ImageNet, which have already learned generic features. By initializing 

the model with pretrained weights, the training process begins from a point where the model pos-

sesses a good understanding of low-level features. Consequently, this approach reduces the number 

of epochs required for convergence, accelerating the overall training process. This reduction in 

training time is particularly valuable in the context of COVID-19 prediction tasks, where datasets 

may contain tens of thousands of images. Models like VGG16 and MobileNet achieve high accu-

racies within just 5 epochs, demonstrating that they require less time to train compared to if they 

were trained from scratch. For instance, VGG16 reaches a training accuracy of 0.93, validation 

accuracy of 0.96, and test accuracy of 0.96 within 5 epochs. This rapid convergence is a direct 

result of starting with pre-trained weights, which have already learned to recognize general image 

features. Without these pre-trained weights, the model would need more epochs to learn these fea-

tures from scratch, significantly increasing the training time. 

Moreover, transfer learning optimizes the utilization of computational resources. Instead of 

expending resources on training from scratch, transfer learning allows practitioners to leverage 

pretrained models, thus saving both time and computational power. This optimization is crucial, 

especially when dealing with resource-intensive tasks like processing large volumes of high-reso-

lution medical images. By utilizing pretrained weights, transfer learning ensures that computational 

resources are allocated efficiently, making the training process more sustainable and cost-effective. 

Even though training from scratch would not only take longer but also require more computational 

power, memory, and energy for each epoch. Using transfer learning, the models reach their perfor-

mance targets more efficiently. For instance, MobileNet, with its relatively smaller number of pa-

rameters (3,538,984), achieves high accuracies (training accuracy of 0.92, validation accuracy of 

0.97, and test accuracy of 0.97) in just 5 epochs. This demonstrates that the model effectively uses 
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the available computational resources, avoiding the extensive resource consumption that would be 

necessary if starting from scratch.  

Furthermore, transfer learning enhances the generalization ability of models. Generaliza-

tion refers to the model's capacity to perform well on unseen data. By leveraging features learned 

from diverse datasets during pretraining, pretrained models capture generic features relevant to a 

wide range of tasks, including image recognition. When fine-tuned on COVID-19 chest X-ray da-

tasets, these models can effectively capture abstract patterns and features specific to COVID-19 

diagnosis. Consequently, the models not only perform well on the training data but also generalize 

effectively to unseen data, enhancing their clinical utility and reliability. The validation and test 

accuracies for VGG16, InceptionV3, and MobileNet are close to their training accuracies, indicat-

ing good generalization. For example, VGG16 has a training accuracy of 0.93, validation accuracy 

of 0.96, and test accuracy of 0.96. This suggests that these models, fine-tuned on the COVID-19 

dataset, can effectively capture relevant features and patterns specific to COVID-19 diagnosis. The 

generalization ability is enhanced because the pre-trained models have already learned a diverse 

set of features from large datasets like ImageNet, which can be adapted to new tasks with minimal 

fine-tuning. 

While transfer learning presents numerous advantages in enhancing the efficiency and ef-

fectiveness of model training, it is crucial to acknowledge the potential drawbacks and limitations 

associated with this approach. By understanding the limitations inherent in transfer learning, re-

searchers and practitioners can better navigate its complexities and make informed decisions re-

garding model selection, fine-tuning strategies, and resource allocation. The results for Efficient-

Net indicate a significant issue with overfitting. When trained for 5 epochs, the training, validation, 

and test accuracies are all at 0.52. Extending the training to 10 epochs does not improve these 

results; in fact, the training accuracy drops to 0.50 while the validation and test accuracies remained 

at 0.52. The decrease in validation accuracy compared to training accuracy in the EfficientNet 

models suggests overfitting, especially noticeable when training for 10 epochs. Here, both training 

and validation accuracies drop, indicating that the model might be learning specific noise or irrel-

evant details from the training data instead of generalizable features. To address this, additional 

fine-tuning or regularization techniques may be needed to prevent overfitting and maintain robust 

performance when using transfer learning. To prevent overfitting in transfer learning, techniques 
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such as data augmentation, dropout, and regularization may be necessary, especially for models 

like EfficientNet. 

While transfer learning offers a general advantage in reducing computational demands com-

pared to training from scratch, the fine-tuning of large pre-trained models such as InceptionV3 or 

EfficientNet still demands substantial computational resources. In particular, models like Incep-

tionV3, with 23,851,784 trainable parameters, and EfficientNet, with 5,330,569 trainable parame-

ters, require significant GPU memory and processing power for effective fine-tuning. This poses a 

challenge for organizations or researchers with limited access to high-performance computing re-

sources, potentially hindering their ability to implement transfer learning for COVID-19 prediction 

tasks effectively. Consequently, while transfer learning may save time and computational effort 

compared to starting from scratch, the initial hardware requirements can be prohibitive, limiting 

the accessibility and scalability of utilizing advanced pre-trained models in the context of COVID-

19 prediction. 

4.7. FUTURE WORK 

To address the limitations and challenges identified in the model, potential improvements 

can be proposed. One significant limitation is the imbalanced nature of the dataset, despite efforts 

to balance it. While the authors employed under-sampling and over-sampling techniques to achieve 

balance, further exploration into advanced sampling methods could enhance the dataset's balance 

without losing crucial information. Techniques such as Synthetic Minority Over-sampling Tech-

nique (SMOTE) or Generative Adversarial Networks (GANs) could be investigated to generate 

synthetic samples for minority classes, thereby improving their representation in the dataset. Ad-

ditionally, refining the image preprocessing techniques could contribute to better feature extraction, 

thereby improving model performance. Techniques like Contrast Limited Adaptive Histogram 

Equalization (CLAHE) could be fine-tuned to better enhance relevant features in the images, espe-

cially for subtle abnormalities associated with COVID-19. 

Strategies for enhancing model performance should be considered comprehensively. 

Firstly, optimizing hyperparameters such as learning rate, batch size, and dropout rate could fine-

tune the model's training process for better convergence and generalization. This optimization pro-

cess could be automated using techniques like grid search or random search to efficiently explore 
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the hyperparameter space. Furthermore, exploring different CNN architectures, including deeper 

networks or architectures with attention mechanisms, may capture more intricate patterns in the 

medical images, leading to improved predictions. Incorporating additional data sources, such as 

clinical metadata or complementary imaging modalities, could provide supplementary information 

for more accurate predictions. For instance, integrating patient demographics, symptoms, and la-

boratory results into the model could enhance its predictive power by considering contextual infor-

mation beyond just the images. 

Future research directions should be explored to advance the model further. Extending the 

model to multi-class classification could enable the differentiation of various respiratory conditions 

beyond COVID-19, enhancing its clinical utility. This extension would require augmenting the 

dataset with additional classes such as pneumonia of other etiologies or non-respiratory conditions 

to create a more comprehensive classification framework. Additionally, incorporating clinical 

metadata, such as patient demographics, symptoms, and comorbidities, into the model could enrich 

its predictive capability by considering contextual information. Exploring alternative transfer learn-

ing techniques, such as fine-tuning pre-trained models on larger medical imaging datasets or uti-

lizing domain adaptation methods, could improve the model's ability to generalize across different 

datasets and populations. Techniques like domain adversarial training or unsupervised domain ad-

aptation could be investigated to mitigate domain shift between datasets collected from different 

sources or patient populations. 

The potential impact of these improvements and future directions on advancing the field of 

COVID-19 prediction using transfer learning approaches in medical imaging is significant. By ad-

dressing the limitations and challenges of the current model, such as dataset imbalance and limited 

feature representation, these advancements could lead to more accurate and reliable predictions of 

COVID-19 from chest X-ray images. This, in turn, could aid healthcare professionals in early de-

tection, diagnosis, and management of COVID-19 cases, ultimately contributing to better patient 

outcomes and public health efforts. Moreover, the development of robust and generalizable models 

for COVID-19 prediction could have broader implications beyond the current pandemic, serving 

as a foundation for future research in computer-aided diagnosis and disease prognosis using med-

ical imaging data. 
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CONCLUSION 

This thesis focused on developing and evaluating a Convolutional Neural Network (CNN) model 

for classifying chest X-rays during the COVID-19 pandemic. It emphasized the need for advanced 

machine learning in healthcare diagnostics. The dataset was carefully prepared with strategies like 

under-sampling and over-sampling to handle class imbalances. Techniques like Singular Value 

Decomposition (SVD) and Contrast Limited Adaptive Histogram Equalization (CLAHE) were em-

ployed for robustness. Processing nearly 17,000 images requires significant computational re-

sources and a stable internet connection. The separation of training and testing datasets, along with 

data augmentation, adds complexity. The evaluation shows promising results, with the MobileNet 

model achieving a test accuracy of 97%. Other models like VGG16 and InceptionV3 also per-

formed well. MobileNet outperformed 30 models, VGG16 with 96% accuracy surpassed 28 mod-

els, and InceptionV3 with 93% accuracy exceeded 12 models from various studies in the literature 

review. However, EfficientNet demonstrated significantly lower performance, achieving only 52% 

accuracy. Detailed analysis revealed areas for improvement, especially in accurately classifying 

COVID and non-COVID cases. Despite high accuracy, nuances in metrics like precision, recall, 

and F1-score highlight optimization opportunities. This study contributed significantly to medical 

image analysis, particularly in infectious disease diagnosis, laying the groundwork for future re-

search in automated diagnostics. The study exemplified an interdisciplinary approach to tackle real-

world healthcare challenges. It underscored the commitment to innovation by addressing compu-

tational challenges and methodological intricacies. The insights gained serve as a springboard for 

further advancements, aiming for more sophisticated and reliable diagnostic solutions. Overall, the 

thesis embodied a comprehensive effort towards a healthier future, transcending disciplinary 

boundaries for impactful outcomes. 

With 4 chapters, literature review, methodology, implementation and training, and results and dis-

cussion, this thesis represents an extensive investigation into the application of transfer learning 

techniques for COVID-19 prediction. 
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APPENDIX 

The codes were developed and executed using Google Colab. In order to access files stored 

in Google Drive within a Google Colab notebook, I first imported the necessary functionality using 

'from google.colab import drive'. Then, I used the 'drive.mount('/content/drive')' command to 

mount the Google Drive to a specific directory within the Colab environment, enabling seamless 

access to files stored in Google Drive. 

Main code: 

import os  

import random  

import shutil  

import numpy as np  

import matplotlib.pyplot as plt  

from sklearn.model_selection import train_test_split  

import tensorflow as tf  

from sklearn.metrics import classification_report, confusion_matrix  

from tensorflow.keras.preprocessing.image import ImageDataGenerator  

from tensorflow.keras.applications import VGG16, EfficientNet, InceptionV3, MobileNet  

from tensorflow.keras.models import Sequential  

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout  

  

# Define paths  
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main_folder = '/content/drive/My Drive/thesis'  

train_folder = '/content/drive/My Drive/train_data'  

test_folder = '/content/drive/My Drive/test_data'  

  

# Create train and test directories  

os.makedirs(train_folder, exist_ok=True)  

os.makedirs(test_folder, exist_ok=True)  

  

# Function to copy images to train and test directories  

def copy_images(class_name, source_dir, dest_dir, file_list):  

    class_dir = os.path.join(dest_dir, class_name)  

    os.makedirs(class_dir, exist_ok=True)  

    for file_name in file_list:  

        src_path = os.path.join(source_dir, class_name, file_name)  

        dest_path = os.path.join(class_dir, file_name)  

        shutil.copy(src_path, dest_path)  

  

# Split data into train and test sets  

for class_name in ['COVID', 'Normal']:  
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    class_dir = os.path.join(main_folder, class_name)  

    if os.path.isdir(class_dir):  

        images = os.listdir(class_dir)  

        train_images, test_images = train_test_split(images, test_size=0.2, random_state=42)  

        copy_images(class_name, main_folder, train_folder, train_images)  

        copy_images(class_name, main_folder, test_folder, test_images)  

  

# Define image dimensions and batch size  

img_width, img_height = 224, 224  

batch_size = 32  

  

# Use data augmentation for the training dataset  

train_datagen = ImageDataGenerator(  

    rescale=1./255,  

    shear_range=0.2,  

    zoom_range=0.2,  

    horizontal_flip=True)  

  

# No data augmentation for the testing dataset  
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test_datagen = ImageDataGenerator(rescale=1./255)  

  

# Load and preprocess the training data  

train_generator = train_datagen.flow_from_directory(  

    train_folder,  

    target_size=(img_width, img_height),  

    batch_size=batch_size,  

    class_mode='binary')  # Binary classification: COVID vs. non-COVID  

  

# Load and preprocess the testing data  

test_generator = test_datagen.flow_from_directory(  

    test_folder,  

    target_size=(img_width, img_height),  

    batch_size=batch_size,  

    class_mode='binary')  

  

# Load pre-trained models  

vgg16_base_model = VGG16(weights='imagenet', include_top=False, input_shape=(img_width, 

img_height, 3))  
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efficientnet_base_model = EfficientNet(weights='imagenet', include_top=False, in-

put_shape=(img_width, img_height, 3))  

inceptionv3_base_model = InceptionV3(weights='imagenet', include_top=False, in-

put_shape=(img_width, img_height, 3))  

mobilenet_base_model = MobileNet(weights='imagenet', include_top=False, in-

put_shape=(img_width, img_height, 3))  

  

# Freeze the convolutional bases  

vgg16_base_model.trainable = False  

efficientnet_base_model.trainable = False  

inceptionv3_base_model.trainable = False  

mobilenet_base_model.trainable = False  

  

# Create new models on top of each base model  

vgg16_model = Sequential([  

    vgg16_base_model,  

    Flatten(),  

    Dense(128, activation='relu'),  

    Dropout(0.5),  

    Dense(1, activation='sigmoid')  



78 

 

])  

  

efficientnet_model = Sequential([  

    efficientnet_base_model,  

    Flatten(),  

    Dense(128, activation='relu'),  

    Dropout(0.5),  

    Dense(1, activation='sigmoid')  

])  

  

inceptionv3_model = Sequential([  

    inceptionv3_base_model,  

    Flatten(),  

    Dense(128, activation='relu'),  

    Dropout(0.5),  

    Dense(1, activation='sigmoid')  

])  

  

mobilenet_model = Sequential([  
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    mobilenet_base_model,  

    Flatten(),  

    Dense(128, activation='relu'),  

    Dropout(0.5),  

    Dense(1, activation='sigmoid')  

])  

  

# Compile the models  

vgg16_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])  

efficientnet_model. 

compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])  

inceptionv3_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])  

mobilenet_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])  

  

# Train the models  

history_vgg16 = vgg16_model.fit(train_generator, epochs=5, validation_data=test_generator)  

history_efficientnet = efficientnet_model.fit(train_generator, epochs=5, validation_data=test_gen-

erator)  

history_inceptionv3 = inceptionv3_model.fit(train_generator, epochs=5, valida-

tion_data=test_generator)  
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history_mobilenet = mobilenet_model.fit(train_generator, epochs=5, validation_data=test_gener-

ator)  

  

# Evaluate the models  

test_loss_vgg16, test_acc_vgg16 = vgg16_model.evaluate(test_generator)  

test_loss_efficientnet, test_acc_efficient = efficientnet_model.evaluate(test_generator)  

test_loss_inceptionv3, test_acc_inceptionv3 = inceptionv3_model.evaluate(test_generator)  

test_loss_mobilenet, test_acc_mobilenet = mobilenet_model.evaluate(test_generator)  

  

print('\nVGG16 Test Accuracy:', test_acc_vgg16)  

print('\nEfficientNet Test Accuracy:', test_acc_efficientnet)  

print('\nInceptionV3 Test Accuracy:', test_acc_inceptionv3)  

print('\nMobileNet Test Accuracy:', test_acc_mobilenet)  

  

# Plot training & validation accuracy values for VGG16 model  

plt.plot(history_vgg16.history['accuracy'])  

plt.plot(history_vgg16.history['val_accuracy'])  

plt.title('VGG16 Model accuracy')  

plt.ylabel('Accuracy')  
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plt.xlabel('Epoch')  

plt.legend(['Train', 'Test'], loc='upper left')  

plt.show()  

  

# Plot training & validation accuracy values for EfficientNet model  

plt.plot(history_efficientnet.history['accuracy'])  

plt.plot(history_efficientnet.history['val_accuracy'])  

plt.title('EfficientNetModel accuracy')  

plt.ylabel('Accuracy')  

plt.xlabel('Epoch')  

plt.legend(['Train', 'Test'], loc='upper left')  

plt.show()  

  

# Plot training & validation accuracy values for InceptionV3 model  

plt.plot(history_inceptionv3.history['accuracy'])  

plt.plot(history_inceptionv3.history['val_accuracy'])  

plt.title('InceptionV3 Model accuracy')  

plt.ylabel('Accuracy')  

plt.xlabel('Epoch')  
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plt.legend(['Train', 'Test'], loc='upper left')  

plt.show()  

  

# Plot training & validation accuracy values for MobileNet model  

plt.plot(history_mobilenet.history['accuracy'])  

plt.plot(history_mobilenet.history['val_accuracy'])  

plt.title('MobileNet Model accuracy')  

plt.ylabel('Accuracy')  

plt.xlabel('Epoch')  

plt.legend(['Train', 'Test'], loc='upper left')  

plt.show() 

 

EfficientNet with 10 Epochs: 

import os 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

import tensorflow as tf 

from sklearn.metrics import classification_report, confusion_matrix 
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from tensorflow.keras.preprocessing.image import ImageDataGenerator 

from tensorflow.keras.applications import EfficientNetB0 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import GlobalAveragePooling2D, Dense, Dropout 

 

# Define paths 

main_folder = '/content/drive/My Drive/thesis' 

train_folder = '/content/drive/My Drive/train_data' 

test_folder = '/content/drive/My Drive/test_data' 

 

# Define image dimensions and batch size 

img_width, img_height = 224, 224 

batch_size = 32 

 

# Use data augmentation for the training dataset 

train_datagen = ImageDataGenerator( 

    rescale=1./255, 

    shear_range=0.2, 

    zoom_range=0.2, 
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    horizontal_flip=True) 

 

# No data augmentation for the testing dataset 

test_datagen = ImageDataGenerator(rescale=1./255) 

 

# Load and preprocess the training data 

train_generator = train_datagen.flow_from_directory( 

    train_folder, 

    target_size=(img_width, img_height), 

    batch_size=batch_size, 

    class_mode='binary')  # Binary classification: COVID vs. non-COVID 

 

# Load and preprocess the testing data 

test_generator = test_datagen.flow_from_directory( 

    test_folder, 

    target_size=(img_width, img_height), 

    batch_size=batch_size, 

    class_mode='binary') 
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# Load pre-trained EfficientNet model 

efficientnet_base_model = EfficientNetB0(weights='imagenet', include_top=False, in-

put_shape=(img_width, img_height, 3)) 

 

# Freeze the convolutional base 

efficientnet_base_model.trainable = False 

 

# Create new model on top of the base model 

efficientnet_model = Sequential([ 

    efficientnet_base_model, 

    GlobalAveragePooling2D(), 

    Dense(128, activation='relu'), 

    Dropout(0.5), 

    Dense(1, activation='sigmoid') 

]) 

 

# Compile the model 

efficientnet_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) 
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# Train the model 

history_efficientnet = efficientnet_model.fit(train_generator, epochs=10, valida-

tion_data=test_generator) 

 

# Evaluate the model 

test_loss_efficientnet, test_acc_efficientnet = efficientnet_model.evaluate(test_generator) 

 

print('\nEfficientNet Test Accuracy:', test_acc_efficientnet) 

 

# Plot training & validation accuracy values for EfficientNet model 

plt.plot(history_efficientnet.history['accuracy']) 

plt.plot(history_efficientnet.history['val_accuracy']) 

plt.title('EfficientNet Model accuracy') 

plt.ylabel('Accuracy') 

plt.xlabel('Epoch') 

plt.legend(['Train', 'Test'], loc='upper left') 

plt.show() 

 

# Predictions for the test data 
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y_pred_efficientnet = efficientnet_model.predict(test_generator) 

y_pred_efficientnet = np.round(y_pred_efficientnet) 

 

# True labels for the test data 

y_true_efficientnet = test_generator.classes 

 

# F1 score, precision, recall 

f1_score_efficientnet = classification_report(y_true_efficientnet, y_pred_efficientnet, zero_divi-

sion=1) 

print("EfficientNet F1 Score, Precision, Recall:") 

print(f1_score_efficientnet) 

 

# Confusion Matrix 

conf_matrix_efficientnet = confusion_matrix(y_true_efficientnet, y_pred_efficientnet) 

print("\nEfficientNet Confusion Matrix:") 

print(conf_matrix_efficientnet) 
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