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1.Introduction

Boundary value problems with a spectral parameter in equations and boundary
conditions form an important part of spectral theory of operators. Many studies
have been devoted to boundary value problems with a spectral parameter in
boundary conditions (see [1-5]).

In this paper, an operator which has the same eigenvalue on the problem that
is discussed in terms of boundary value problem and is introduced in the space
l2w(N) has been constructed. Then we obtained the eigenvalues and eigenvectors
of operator generated by boundary value problem.

A matrix of the form of an in�nite Jacobi matrix is de�ned by

J =

26666664
b0 a0 0 0 0 : : :
a0 b1 a1 0 0 : : :
0 a1 b2 a2 0 : : :
: : : : : : : :
: : : : : : : :
: : : : : : : :

37777775 ;



where an 6= 0 and Im an = Im bn = 0 (n 2 N): For all sequence y = fyng
(n 2 N) composed of complex numbers y0; y1; ::: denote by ly sequence whose
components (ly)n (n 2 N) is de�ned by

(ly)0 : =
1

w0
(Jy)0 =

1

w0
(b0y0 + a0y1)

(ly)n : =
1

wn
(Jy)n =

1

wn
(an�1yn�1 + bnyn + anyn+1); n � 1;

where wn > 0 (n 2 N). For two arbitrary sequences y = fyng and z = fzng
Wronskian of them is de�ned by

Wn(y; z) = [y; z]n = an(ynzn�1 � yn+1zn)(n 2 N):

Then for all n 2 N

(1.1)
nX
j=0

fwj(ly)jzj � wjyj(lz)jg = � [y; z]n (n 2 N)

equality is called Green�s formula.
To pass from the matrix J to operators let�s construct Hilbert space l2w(N)

(w := fwng n 2 N) composed of all complex sequences y = fyng (n 2 N)

provided
1X
n=0

wn jynj2 < 1, with the inner product (y; z) =
1X
n=0

wnynzn. Let�s

denote with D the set of y = fyng (n 2 N) sequences in l2w(N) providing
ly 2 l2w(N). De�ne L on D being Ly = ly. For all y; z 2 D , we obtain existing
and being �nite of the limit [y; z]1 = lim

n�!1
[y; z]n from (1.1). Therefore, passing

to the limit as n �!1 in (1.1) it is obtained

(1.2) (Ly; z)� (y; Lz) = � [y; z]1 :

In l2w(N) we consider the linear set D
0

0 consisting of �nite vector having only
�nite many nonzero components. We denote the restriction of L operator in D

0

0

by L
0

0: It is clear from (1.2) that L
0

0 operator is symmetric. The clousure of L
0

0

operator is denoted by L0: The domain of L0 operator is D0 and it consists the
vector of y 2 D satisfying the condition [y; z]1 = 0 8z 2 D: The operator
L0 is a closed symmetric operator with defect index (0; 0) and (1:1). Moreover
L = L�0 (see [1]� [4] ; [6]� [9]). The operators L0; L are called respectively the
minimal and maximal operators. The operator L0 is a self adjoint operator for
defect index (0; 0): That is L�0 = L0 = L.
Let the solution of equation of

(1.3) an�1yn�1 + bnyn + anyn+1 = �wnyn (n = 1; 2; :::)



satisfying initial conditions of

(1.4) P0(�) = 1; P1(�) =
�w0 � b0
a0

; Q0(�) = 0; Q1(�) =
1

a0

be P (�) = fPn(�)g and Q(�) = fQn(�)g where the function Pn(�) is called
the �rst kind polynomial of degree n in � and the function Qn(�) is called the
second kind polynomial of degree n � 1 in �. For n � 1 P (�) is a solution
of (Jy)n = �wnyn is Pn(�). However because of (JQ)0 = b0Q0 + a0Q1 =
b00 + a0

1
a0
= 1 6= 0 = �Q0; Q(�) is not a solution of (JQ)n = �wnQn. For

n 2 N and under boundary condition y�1 = 0; the equation (Jy)n = �wnyn is
equivalent to (1.3). The Wronskian of the solutions y = fyng and z = fzng of
the equation (1.3) is as follows

Wn(y; z) := an(ynzn+1 � yn+1zn) = [y; z]n ; (n 2 IN)

The Wronskian of the two solutions of (1.3) does not depend on n; and two solu-
tions of this equations is linearly indepent if only if their Wronskian is nonzero.
From Wronskian constacy, W0(P;Q) = 1 is obtained from the condition (1.4).
Consquently, P (�) and Q(�) form a fundamental system of solutions (1.3).
Suppose that the minimal symmetric operator L0 has defect index (1,1) so

that the Weyl limit circle case holds for the expression ly (see[1]� [4] ; [7]� [9]).
As the defect index of L0 is (1,1) for all � 2 C the solutions of P (�) and Q(�)
belong to l2w(N): The solutions of u = fung and v = fvng of the equality (1.3)
be u = P (0) and v = Q(0) satisfying the initial condition of

u0 = 1; u1 = �
b0
a0
; v0 = 0; v1 =

1

a0

while � = 0: In addition it is u; v 2 D and

(Ju)n = 0; (n 2 IN); (Jv)n = 0; n � 1

Lemma 1. For arbitrary vectors y = fyng 2 D and z = fzng 2 D it is

[y; z]n = [y; u]n [z; v]n � [y; v]n [z; u]n ; (n 2 N [ f1g)

Theorem 2. The domain D0 of the operator L0 consists precisely of those
vectors y 2 D satisfying the following boundary conditions

[y; u]1= [y; v]1 = 0:



Consider boundary value problem

(1.5) (ly)n = �yn y 2 D; n � 1;

(1.6) y0 + hy�1 = 0; Imh > 0

(1.7) �1 [y; v]1 � �2 [y; u]1 = �(�
0

1 [y; v]1 � �
0

2 [y; u]1)

for the following di¤erence expression

(ly)0 : =
1

w0
(Jy)0 =

1

w0
(b0y0 + a0y1)

(ly)n : =
1

wn
(Jy)n =

1

wn
(an�1yn�1 + bnyn + anyn+1); n � 1

where � is spectral parameter and �1; �2; �
0

1; �
0

2 2 R and � is de�ned by

� :=

�����01 �1
�
0

2 �2

���� = �01�2 � �1�02 > 0:
Let�s suppose that the followings

M1(y) : = �1 [y; v]1 � �2 [y; u]1 ;
M

0

1(y) : = �
0

1 [y; v]1 � �
0

2 [y; u]1 ;

N0
1 (y) : = y�1;

N0
2 (y) : = y0;

N1
1 (y) : = [y; v]1 ;

N1
2 (y) : = [y; u]1 ;

M0(y) : = N0
2 (y) + hN

0
1 (y):

Lemma 3. For arbitrary y; z;2 D suppose that M1(z) = M1(z); M
0

1(z) =

M 0
1(z) and N

0
1 (z) = N

0
1 (z); N

0
2 (z) = N

0
2 (z) then it is

i)

(1.9) [y; z1] =
1

�

h
M1(y)M

0
1(z)�M

0

1(y)M1(z)
i

ii)

(1.10) [y; z]�1 = N
0
1 (y):N

0
2 (z)�N0

1 (z):N
0
2 (y)



Proof. i)

1

�

h
M1(y)M

0
1(z)�M

0

1(y)M1(z)
i

=
1

�
(�1 [y; v]1 � �2 [y; u]1)

�
�
0

1 [z; v]1 � �
0

2 [z; u]1

�
�
�
�
0

1 [y; v]1 � �
0

2 [y; u]1 (�1 [z; v]1 � �2 [z; u]1)
�

=
1

�
[�

0

1�2 ([y; v]1 [z; u]1 � [y; u]1 [z; v]1)

��1�
0

2 ([y; v]1 [z; u]1 � [y; u]1 [z; v]1)]

=
1

�

h�
�
0

1�2 � �1�
0

2

�
([y; v]1 [z; u]1 � [y; u]1 [z; v]1)

i
:

From Lemma 1 it is obtained

1

�

h
M1(y)M

0
1(z)�M

0

1(y)M1(z)
i
= [y; z]1 :

ii) is similar to i).

2. Linear Operator Generated by Given Boundary Value Problem in
Hilbert Space

Supposing f (1) 2 l2w(N); f (2) 2 C we denote linear space H = l2w(N) � C with

two component of elements of bf = �
f (1)

f (2)

�
: Supposing � :=

���� ��1 �1
��2 �2

����, if
� > 0 and

bf = � f (1)

f (2)

�
; bg = � g(1)

g(2)

�
2 H; f (1) = (f (1)n ); g(1) = (g(1)n ) (n 2 N);

then the formula

(2.1)
� bf; bg� = 1X

n=0

f (1)n g(1)n wn +
1

�
f (2)g(2)

de�nes an inner product in H Hilbert space. In terms of this inner product, H
linear space is a Hilbert space. Thus it is Hilbert space which is suitable for
boundary value problem has been de�ned. Suitable for boundary value problem
let�s de�ne operator of Ah : H �! H with equalities

(2.2) D(Ah) =

�bf = � f (1)

f (2)

�
2 H : f (1) 2 D; M0(f

(2) =M�
1(f

(1))

�



and

(2.3) Ah bf = �
l ( bf) := � l

�
f (1)

�
M1

�
f (1)

� � :
Lemma 4. In Hilbert space H = l2w(N) � C for Ah operator de�ned with
equalities (2.2) and (2.3) the equality

(2.4)

�
Ah bf; bg�� � bf;Ahbg� = �f (1); g(1)��1 � �f (1); g(1)�1

+ 1
�

h
M1(f

(1))M�
1(g

(1))�M�
1(f

(1))M1(g(1))
i

is provided.

Proof. From (1.8) and (2.1) it is

�
Ah bf; bg�

N
: =

NX
n=0

1

wn
(an�1f

(1)
n�1 + bnf

(1)
n + anf

(1)
n+1)g

(1)
n wn

+
1

�
M1f

(1)M {
1(g

(1)) +
1

�
M1f

(1)M 0
1(g

(1))

=

NX
n=0

(an�1f
(1)
n�1 + bnf

(1)
n + anf

(1)
n+1)g

(1)
n

+
1

�
M1f

(1)M 0
1(g

(1))

=
NX
n=0

(an�1f
(1)
n�1g

(1)
n + bnf

(1)
n g

(1)
n + anf

(1)
n+1g

(1)
n )

+
1

�
M1f

(1)M 0
1(g

(1))

= (a�1f
(1)
�1 g

(1)
0 + b0f

(1)
0 g

(1)
0 + a0f

(1)
1 g

(1)
0 + a0f

(1)
0 g

(1)
1

+b1f
(1)
1 g

(1)
1 + a1f

(1)
2 g

(1)
1 + :::+ aN�1f

(1)
N�1g

(1)
1

+bNf
(1)
N g

(1)
N + aNf

(1)
N+1)g

(1)
N +

1

�
M1f

(1)M 0
1(g

(1))

Similarly it is

� bf;Ahbg�
N

: =

NX
n=0

1

wn
(an�1g

(1)
n�1 + bng

(1)
n + ang

(1)
n+1)f

(1)
n wn

+
1

�
M

0

1(f
(1))M1(g

(1))



=
NX
n=0

(an�1g
(1)
n�1 + bng

(1)
n + ang

(1)
n+1)f

(1)
n +

1

�
M

0

1(f
(1))M1(g

(1))

=
NX
n=0

(an�1f
(1)
n g

(1)
n�1 + bnf

(1)
n g(1)n + anf

(1)
n g

(1)
n+1)

+
1

�
M

0

1f
(1)M1(g

(1))

= a�1f
(1)
0 g

(1)
�1 + b0f

(1)
0 g

(1)
0 + a0f

(1)
0 )g

(1)
1 ) + a0f

(1)
1 )g

(1)
0

+b1f
(1)
1 g

(1)
1 + a1f

(1)
1 g

(1)
2 + :::+ aN�1f

(1)
N g

(1)
N�1 + bNf

(1)
N g

(1)
N

+aNf
(1)
N )g

(1)
N+1 +

1

�
M1f

(1)M 0
1(g

(1))

Thus it is obtained:

�
Ah bf; bg�

N
�
� bf;Ahbg�

N
= a�1f

(1)
�1 g

(1)
0 � a�1f (1)0 g

(1)
�1 + aNf

(1)
N+1g

(1)
N

�aNf (1)N )g
(1)
N+1 +

1

�
M1f

(1)M
0
1(g

(1))

� 1
�
M

0

1

�
f (1)

�
M1(g

(1))

= a�1(f
(1)
�1 g

(1)
0 � f0g(1)�1)� aN (f

(1)
N g

(1)
N+1

�fN+1g(1)N ) +
1

�
M1(f

(1))M
0
1(g

(1))

� 1
�
M

0

1(f
(1))M1(g

(1)

=
h
f (1); g(1)

i
�1
�
h
f1; g(1)

i
N
+
1

�
M1(f

(1))M
0
1(g

(1))

� 1
�
M

0

1(f
(1))M1(g

(1))

As N �!1, passing to limit, it is obtained

�
Ah bf; bg�� � bf;Ahbg� =

h
f (1); g(1)

i
�1
�
h
f (1); g(1)

i
1

+
1

�

h
M1(f

(1))M 0
1(g

(1))�M
0

1(f
(1))M1(g(1))

i
:

Theorem 5. Ah operator is dissipative in H space.

Proof. For by = fbyng 2 D (Ah) and D (Ah) = H; from equality (2.4), it is



obtained

(Ahby; by)� (by;Ahby) =
h
y(1); y(1)

i
�1
�
h
y(1); y(1)

i
1

+
1

�

h
M1

�
y(1)

�
M 0
1
�
y(1)

�
�M

0

1

�
y(1)

�
M1

�
y(1)

�i
Because of (1.9), it is

(Ahby; by)� (by;Ahby) = hy(1); y(1)i
�1

and from (1.10), it is obtained

(Ahby; by)� (by;Ahby) = N0
1 (y

(1))N0
2 (y

(1))�N0
1 (y

(1))N0
2 (y

(1))

because of M0(y) = 0 and N0
2 (y

(1)) = �hN0
1 (y

(1)); it is obtained

(Ahby; by)� (by;Ahby) = N0
1 (y

(1))(�hN0
1 (y

(1)) +N0
1 (y

(1))hN0
1 (y

(1))

= (h� h)(N0
1 (y

(1))N0
1 (y

(1))

= (h� h)
���N0

1 (y
(1))
���2

= 2iIm h
���N0

1 (y
(1))
���2

Therefore, it is

Im (Ahby; by) = Imh ���N0
1 (y

(1))
���2 � 0 (Imh > 0)

That is Ah operator is dissipative in H space.

3. The Eigenvalues and Eigenspaces of Ah Operator Generated by
Boundary Value Problem in Hilbert Space

For all � 2 C; the solutions of (1.5) be �(�) and �(�) for the following conditions:

(3.1)

N0
1 (�(�)) = ��1(�) = �1;

N0
2 (�(�)) = y0 = h;

N1
1 (�(�)) = �2 � ���2;

N1
1 (�(�)) = �1 � ���1

From (1.10) for ��1(�) having Wronskian is

��1(�) : = [�(�); �(�)]�1 = � [�(�); �(�)]�1
= �N0

1 (�(�))N
0
2 (�(�)) +N

0
1 (�(�))N

0
2 (�(�))

= N0
2 (�(�)) + hN

0
1 (�(�))

= M0(�(�)):



From (1.9) for �1(�) having Wronskian is

�1(�) : = [�(�); �(�)]1 = � [�(�); �(�)]1
= � 1

�

�
M1(�(�)M

�
1(�(�))�M�

1(�(�))M1(�(�))
�

Therefore, in terms of the de�nition of �, it is

�1(�) = � 1
�
[(�1N

1
1 (�(�)))� �2N1

2 (�(�))(�
�
1N

1
1 (�(�)))� ��2N1

2 (�(�))

���1N1
1 (�(�))� ��2N1

2 (�(�))(�1N
1
1 (�(�))� �2N1

2 (�(�))]

= � 1
�

��
��1�2 � ��2�1

�
(N1

1 (�(�))N
1
2 (�(�)))�N1

2 (�(�))N
1
1 (�(�))

�
= � 1

�

�
(��)N1

1 (�(�))
�
�1 + ��

�
1

�
�N1

2 (�(�))
�
�2 + ��

�
2

��
= �1N

1
1 (�(�))� �2N1

2 (�(�)) + �
�
��1N

1
1 (�(�))� ��2N1

2 (�(�))
�

= M1(�(�) + �M
�
1(�(�)):

Lemma.6. Boundary values problem (1:5)�(1:7) has eigenvalues i¤ it consists
of zeroes of �(�).

(�(�) = ��1(�) = �1(�))

Proof. ()) Let �
0
be zeroes of ��1(�). Then it is

��1(�0) = ��1(�0)�0(�0)� �0(�0)��1(�0) = 0

For n = �1; because�(�) is the Wronskian of �(�0) and �(�0) vectors according
to (3:1) the solution of � and � are linearly dependent. That is, a �x number
k 6= 0 will be found to be �(�0) = k�(�0). Because of (3:1) ; �(�0) is a solution
of (1:5)� (1:7) : That is � = �

0
is an eigenvalue.

(() Let us assume that � = �
0
is an eigenvalue. Then we show��1(�0) = 0

and �1(�) = 0 are true. For � = �0 let us assume ��1(�0) 6= 0 and �1(�) 6=
0:If ��1(�0) 6= 0 and �1(�) 6= 0; then �(�0) and �(�0) vectors will be linearly
independent. Thus the general solution of (1:5) equation can be written as

y (�0) = c1 (�0)�(�0) + c2�(�0):

Because of boundary condition (1:6) ; y0 + hy�1 = 0 equality is provided. If
condition (1:6) is considered the equality

c1(�0(�0) + h��1(�0)) + c2(�0(�0) + h��1(�0)) = 0



will be obtained. In this equality �(�0) is a solution providing boundary condition (1:6).
Then we have

c2(�0(�0) + h��1(�0)) = c2��1(�0) = 0

As we accepted ��1(�0) 6= 0 it is c2 = 0: Because of (1:6) and c2 = 0 it is

c1f[�(�0); v]1
�
�1 � ���1

�
� [�(�0); u]1

�
�2 � ���2

�
g = c1�1(�0) = 0

As it is accepted ��1(�0) 6= 0 then it is c1 = 0: As c1 = 0 and c2 = 0: Then
y (�0) = 0: This conradicts �o being eigenvalue. Thus the proof is completed.
If should we show the zeroes of ��1(�) and �1(�) as �n (n = 0; 1; 2; :::), the
vectors of

b�n = � � (�n)

M�
1 (� (�n))

�
2 D (Ah)

provides equality of Ahb�n = �hb�n. That is, the vectors of b�n�s are eigenvectors
of the operator Ah.

De�nition 7. If the system of vectors of y0; y1; y2; :::; yn corresponding
to the eigenvalue �0 are

(3.3)

l (y0) = �0y0;
M1 (y0)� �0M�

1 (y0) = 0;
M0 (y0) = 0;
l (ys)� �0ys � ys�1 = 0;
M1 (ys)� �0M�

1 (ys)�M�
1 (ys�1) = 0;

M0 (ys) = 0; s = 1; 2; :::; n:

Then the system of vectors of y0; y1; y2; :::; yn corresponding to the eigenvalue
�0 is called a chain of eigenvectors and associated vectors of boundary value
problem (1:5)� (1:7).

Lemma 8. The eigenvalue of boundary value problem (1:5) � (1:7) coincides
with the eigenvalue of dissipative Ah operator. Additionally each chain of eigen-
vectors and associated vectors y0; y1; y2; :::; yn corresponding to the eigenvalue �0
corresponds to the chain eigenvectors and associated vectors by0; by1; by2; :::; byn
corresponding to the same eigenvalue �0 of dissipative Ah operator. In this case,
the equality

byk = � yk
M�
1 (yk)

�
; k = 0; 1; 2; :::; n

is valid.

Proof. If by0 2 D (Ah) and Ahby0 = �0by0; then l (y)0 = �0y0;M1 (y0) �
�0M

�
1 (y0) = 0 andM0 (y0) = 0 equalities are provided. That is, the eigenvector



of boundary value (1:5) � (1:7) problem is y0. On the contrary, if conditions
(3:3) are supplied then it is

�
y0

M�
1(y0)

�
= by0 2 D (Ah) and Ahby0 = �0by0. In

other words, by0 is the eigenvector of Ah. Further, if by0; by1; by2; :::; byn are a chain
of eigenvectors and associated vectors corresponding to the eigenvalue �0 of
dissipative Ah operator, then it is byk 2 D (Ah) (k = 0; 1; 2; :::; n) and Ahby0 =
�0by0, Ahbys = �0bys + bys�1; s = 1; 2; :::; n with (3:3) equality, where the vectors
of y0; y1; y2; :::; yn are the �rst component of by0; by1; by2; :::; byn. On the contrary,
we obtain byk = � yk

M�
1(yk)

�
2 D (Ah) ; k = 0; 1; 2; :::; n and Ahby0 = �0by0; Ahbys =

�0bys+bys�1; s = 1; 2; :::; n corresponding to boundary value problem (1:5)�(1:7).
Thus the proof is completed.
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