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In this work, we explicitly show resurgence relations between perturbative and one in-

stanton sectors of the resonance energy levels for cubic and quartic anharmonic potentials

in one-dimensional quantum mechanics. Both systems satisfy the Dunne–Ünsal relation
and hence we are able to derive one-instanton nonperturbative contributions with the

fluctuation terms to the energy merely from the perturbative data. We confirm our

results with previous results obtained in the literature.
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1. Introduction

Perturbation theory, even often very useful, misses many interesting physical

phenomena like exponentially suppressed instanton effects. In usual perturbative

expansion, the energy is expanded as

E(g) =

∞∑
n=0

Eng
n , (1.1)

where g is the coupling constant.a As the coupling constant goes to zero, terms like

e−
S
g cannot be represented in this expansion for any finite positive real number S.

aIn quantum mechanics, the semiclassical expansion is in powers of the Planck constant.
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Moreover, in many interesting physics problems, the perturbation theory is mathe-

matically ill-defined: in large orders, the coefficients En grow like a factorial of the

order and not alternating by sign which leads to the fact that the expansion is not

Borel summable. Hence, the resummation procedure leads to ambiguous imaginary

terms. In fact, these missing physical effects and the mathematically ill-defined

picture of the series are related to each other. Once we include these nonpertur-

bative effects to the perturbative expansion in a trans-series form, the ambiguous

imaginary terms cancel each other and the mathematically ill-defined picture is

removed. Typically, once we involve the instanton effects we get the following form

of trans-series expansion for the Nth energy level

E(N)(g) =

∞∑
n=0

n−1∑
l=1

∞∑
m=0

cn,l,m
e−n

S
g

gn(N+ 1
2 )

(
ln

[
a

g

])l
gm , (1.2)

with coefficients cn,l,m and constant a. This expansion has three generators: the

expansion parameter g, a single instanton factor e−
S
g with instanton action coef-

ficient S and logarithmic terms arising from the instanton interaction. Note that

n = 0 corresponds to the usual perturbative expansion and the logarithmic terms

first start appearing at two-instanton sector.

In order to derive the full expansion of the form (1.2), in a series of works2–5

Zinn-Justin et al. have conjectured generalized quantization conditions whose

small-g expansion leads to the full trans-series expansion. In simple cases, these

generalized quantization conditions depend on two functions B(E, g) and A(E, g).

The function B is called the perturbative function since it is obtained purely from

perturbative expansion and its solution for E(B, g) reduces to the usual Rayleigh–

Schrödinger perturbative expansion of the Nth energy level once the value of B is

restricted to N + 1
2 . The function A(E, g) is called the nonperturbative instanton

function which includes the instanton action as the first term plus the instanton

fluctuation terms. Interested reader can find more details about these functions in

Ref. 5.

For many systems with degenerate minima including double-well and sine-

Gordon potentials, Dunne and Ünsal have shown by using the uniform WKB

approach6–8 (see also Ref. 9 for the sine-Gordon potential) that the following rela-

tion holds between A(E, g) and B(E, g) functions

∂E(B, g)

∂B
= − g

2S

(
2B + g

∂A(B, g)

∂g

)
, (1.3)

where the energy E and the instanton function A are expressed in terms of B and

g. This relation has also been shown to hold for the resonance energy levels of a

particle located at the local minima of cubic and quartic anharmonic potentials.1

In such systems, the particle has a nonvanishing decay width and the instantons

are associated with the imaginary part of the energy.

One may easily recognize that the Dunne–Ünsal relation has a powerful con-

sequence: Rather than calculating both perturbative and nonperturbative sectors
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separately, it is enough actually to compute one sector in order to derive the other.

Hence from the generalized quantization condition, it is actually enough to know

one of the functions A, B in order to derive the full-resurgent expansion. Therefore,

this relation implies a high correlation between the coefficients cn,l,m and has an

explanation in the framework of resurgence analysis.

In this work, we summarize a few results obtained recently in Ref. 1, i.e. we

review the relation between perturbative and nonperturbative sectors for cubic

and quartic anharmonic potentials. We discuss the implications of this relation

by explicitly deriving one-instanton contributions including the fluctuation terms

to the energy levels for the mentioned potentials by using only the perturbative

calculations. Our results confirm the known results in the literature. We restrict

the discussion to the cubic and quartic anharmonic oscillators only and follow the

notations used by Zinn-Justin et al.4,16

There is a wide literature on cubic and quartic anharmonic potentials. Here,

we discuss the energy levels of these potentials from the resurgence point of view.

After completing this work, it came into authors’ attentionb that there is an overlap

between this work and the references.22–24

2. Generalized Quantization Conditions

In this section, we give a brief review of the perturbative WKB method developed

in Refs. 2–5. In these works, Zinn-Justin et al. proposed a complete description of

the energy eigenvalues including the nonperturbative effects by using a generalized

quantization condition which is an extension of the usual Bohr–Sommerfeld quanti-

zation condition. An equal description of Bohr–Sommerfeld quantization condition

can be obtained as follows. Let us consider time-independent Schrödinger equation

for cubic anharmonic potential(
−1

2

∂2

∂q2
+ V (q)

)
φ = Eφ , (2.1)

with V (q) = 1
2q

2+
√
gq3. Once we apply the scaling q → g−

1
2 q and define a function

s(q) = −g φ
′(q)
φ(q) , we are able to write the Schrödinger equation in the form of the

Riccati equation as follows

gs′(q)− s2(q) + q2 + 2q3 − 2gE = 0 . (2.2)

Here by fixing E and g → 0 allows us to define the perturbative expansion of s(q)

whose coefficients are recursively related.4 One important property of the function

s(q) is on the complex plane

− 1

2πig

∮
dz s(z) =

1

2πi

∮
dz
φ′(z)

φ(z)
= N , (2.3)

bWe thank Marcos Marino for pointing out these works to us.
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where N is the energy level. Equation (2.3) is the Bohr–Sommerfeld quantization

condition and directly follows from the number of zeroes that a wave function has.

Since the Nth state harmonic oscillator wave function has N zero values, a small

perturbed anharmonic oscillator has the same number of zeroes. Furthermore, by

decomposing s(q) into antisymmetric and symmetric parts s(q) = sodd + seven
under simultaneous transformations g → −g and E → −E, one finds that the

antisymmetric part sodd can be purely expressed by the symmetric part as follows

sodd =
g

2

s′even(q)

seven(q)
. (2.4)

Then, we can write the Bohr–Sommerfeld quantization condition (2.3) equivalently

in the following way

− 1

2πig

∮
dq seven(q) = N +

1

2
. (2.5)

From Eq. (2.2), it is clear that the function seven is implicitly dependent on g and

E. Hence, we define the function B3(E, g) for cubic potential as

B3(E, g) = − 1

2πig

∮
dq seven(q) . (2.6)

A similar function B4(E, g) for quartic potential can be defined by the same proce-

dure. To include the instanton effects to the energy, we need a different quantization

condition than (2.5). The generalized Bohr–Sommerfeld quantization condition, we

are going to mention next, is developed for that reason. In order to get the in-

stanton contributions, in Ref. 4 an additional function A(E, g) is needed for cubic

and quartic anharmonic potentials. In their approach, the generalized quantization

conditions read

1

Γ
(
1
2 −B3(E, g)

) =
1√
8π

(
−8

g

)B3(E,g)

e−A3(E,g) , (2.7)

1

Γ
(
1
2 −B4(E, g)

) =
1√
2π

(
4

g

)B4(E,g)

e−A4(E,g) , (2.8)

for cubic and quartic potentials, with g > 0 and g < 0, respectively. The functions

B and A have the following expanded forms

B(E, g) = E +

∞∑
i=1

gibi+1(E) , (2.9)

A(E, g) = Sinstanton +

∞∑
i=1

giai+1(E) , (2.10)

where bi and ai are polynomials of degree i in E and Sinstanton denotes the instanton

action. In (2.9) solving E for B = N + 1/2 will return us the usual perturbative

expansion for the Nth energy level. The A function (2.10) consists of single instan-

ton action and instanton fluctuation terms. In fact, the calculation of the function
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A is in general more challenging than the perturbative function B. Since our aim is

to derive the one-instanton fluctuation terms by using the B function only, we will

not discuss the derivation of the A function and refer interested reader to Ref. 5.

Instead, we will recover the fluctuation terms by using the Dunne–Ünsal relation.

3. Fluctuation Factors

In this section, we present the procedure to compute the fluctuation factors of one

instanton sector for energy eigenvalues of cubic and quartic anharmonic oscillators.

3.1. Cubic anharmonic oscillator

The Hamiltonian we consider for the cubic anharmonic oscillator is

H(g) = −1

2

∂2

∂q2
+

1

2
q2 +

√
gq3 . (3.1)

Here, we consider the case for g > 0. Then, the system possess resonances and the

resonance energies are complexc where the complex part of the energy is associated

with instanton configurations.4 A single instanton action for this system is 2
15g .

The usual Rayleigh–Schrödinger perturbative expansion of the ground state

energy for this potential yields the following expansion20,21

Eground(g) =
1

2
− 11

8
g − 465

32
g2 − 39709

128
g3 − 19250805

2048
g4 + · · · . (3.2)

The coefficients of this expansion is nonalternating for g > 0 and in large orders

the coefficients grow like a factorial of the order. Hence, the series is non-Borel

summable.

Once we include the instanton effects to the system, in Refs. 4 and 12 Zinn-

Justin et al. discussed the expansion of the quantization condition (2.7) leads to

the following resurgent expansion of the Nth energy level4,12

E(N)(g) =

∞∑
n=0

E(N)
n gn +

∞∑
k=1

k−1∑
l=1

∞∑
m=0

(
i√
πN !

23N

gN+ 1
2

e−
2

15g

)k(
ln

[
−8

g

])l
ck,l,mg

m ,

(3.3)

where the first summation term on the right-hand side denotes the usual perturba-

tive expansion (3.2) of the Nth excited state.

In Ref. 1 the functions E(B, g) and A(B, g) used in the quantization condition

(2.7) have been shown to satisfy the Dunne–Ünsal relation in the following form

∂E(B, g)

∂B
= − g

S

(
B + g

∂A(B, g)

∂g

)
, (3.4)

cIn case g < 0, the Hamiltonian (3.1) is PT -symmetric and has a real spectrum, see, e.g. Ref. 15.
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where E(B, g) is given by1,4

E(B, g) = B − g
(

7

16
+

15

4
B2

)
− g2

(
1155

64
B +

705

16
B3

)
− g3

(
101479

2048
+

209055

256
B2 +

115755

128
B4

)
− g4

(
129443349

16384
B +

77300685

2048
B3 +

23968161

1024
B5

)
+ · · · . (3.5)

One can then obtain the usual perturbation theory ground state energy (3.2) by

setting B = 1
2 in the above expression.

Now let us calculate the fluctuation factors. For this reason, we need to introduce

the instanton fluctuation factor H is given by (see e.g. Ref. 5)

H = exp

[
−A+

S

g

]
= exp

[
S

∫
dg

g2

(
∂E

∂B
+
Bg

S
− 1

)]
, (3.6)

where S is the coefficient of the instanton action. Note that the second line in

(3.6) is obtained by using the Dunne–Ünsal relation (3.4). Then, we calculate the

nontrivial fluctuation factor by the following equation8

F = H
∂E(B, g)

∂B
. (3.7)

In fact, the coefficients of the function F are the coefficients ck,l,m appearing in

(3.3) for k = 1, l = 0.

By using the arguments above, we calculate the nontrivial fluctuation factor of

one instanton sector for arbitrary Nth energy level as

F = 1 +

(
−141B2

8
− 15B

2
− 77

32

)
g

+
(318096B4 − 223168B3 − 183864B2 − 186032B − 31031)

2048
g2 + · · · . (3.8)

The imaginary part of the energy then can be written by

ImEN = − 23Ne−
2

15g

√
πN !gN+ 1

2

F . (3.9)

Then by using the expansion (3.5), one can easily obtain the imaginary part of the

energies for N = 0, 1, 2, 3 (B = 1
2 , 3

2 , 5
2 , 7

2 , respectively) as follows

Im E0 = −e
− 2

15g

√
πg

[
1− 169

16
g − 44507

512
g2 − 86071851

40960
g3 − 189244716209

2621440
g4 − · · ·

]
,

(3.10)
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Im E1 = −8e−
2

15g√
πg3

[
1− 853

16
g +

33349

512
g2 − 395368511

40960
g3

− 1788829864593

2621440
g4 − · · ·

]
, (3.11)

Im E2 = −32e−
2

15g√
πg5

[
1− 2101

16
g +

1823341

512
g2 − 1085785671

40960
g3

− 4272925639361

2621440
g4 − · · ·

]
, (3.12)

Im E3 = −256e−
2

15g

3
√
πg7

[
1− 3913

16
g +

8807869

512
g2 − 15716668611

40960
g3

− 3214761534593

2621440
g4 − · · ·

]
. (3.13)

They all agree with the results obtained in Refs. 14 and 12 (see also Ref. 13)

and can easily be extended beyond. Note that the imaginary part has a negative

sign due to we are considering here resonance energy levels, whereas antiresonance

energy levels have a positive imaginary part. Here, one can justify the power of the

formula (3.4) For any state N , the perturbative expansion is enough to calculate

the nontrivial fluctuation factor in the nonperturbative sector and contribution to

the energy thereof.

3.2. Quartic anharmonic oscillator

Similar results can also be obtained for the quartic anharmonic potential whose

Hamiltonian we consider is

H(g) = −1

2

∂2

∂q2
+

1

2
q2 + gq4 . (3.14)

Note that for this potential the system has resonances on the real line of g < 0

and instantons exists in this region. The decay width of a particle trapped on the

local minima is not zero and complex part of the energy is associated with the

instanton configurations. A single instanton action for this system reads − 1
3g which

is positive.

The Rayleigh–Schrödinger perturbation theory yields the following energy

expansion for the ground state energy18,21

Eground =
1

2
+

3

4
g − 21

8
g2 +

333

16
g3 − 30885

128
g4 + · · · . (3.15)
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Again the coefficients in this expansion grow like a factorial of the order in large

orders and nonalternating by sign, which makes the series non-Borel summable.d

The Nth level excited state has the following resurgent expansion for the quartic

potential

E(N)(g) =

∞∑
n=0

E(N)
n gn +

∞∑
k=1

k−1∑
l=1

∞∑
m=0

(
i√
πN !

22N+ 1
2

(−g)N+ 1
2

e
1
3g

)k(
ln

[
4

g

])l
ck,l,mg

m .

(3.16)

Again for this system, the perturbative and the nonperturbative functions satisfy

∂E(B, g)

∂B
= − g

S

(
B + g

∂A(B, g)

∂g

)
, (3.17)

where E(B, g) is given by1,4

E(B, g) = B + g

(
3

8
+

3

2
B2

)
− g2

(
67

16
B +

17

4
B3

)

+ g3
(

1539

256
+

1707

32
B2 +

375

16
B4

)

− g4
(

305141

1024
B +

89165

128
B3 +

10689

64
B5

)
+ · · · . (3.18)

The usual perturbation series of the ground state can be regained by setting B = 1
2

in the above expression.

In case of quartic potential, the nontrivial fluctuation factor of one instanton

sector for any N is

F = 1 +

(
17B2

4
+ 3B +

67

48

)
g

+
(41616B4 − 13248B3 − 31416B2 − 62640B − 14807)

4608
g2 + · · · , (3.19)

which gives us the following imaginary part of the energies

Im E0 = −
√
− 2

πg
e

1
3g

[
1 +

95

24
g − 13259

1152
g2 +

8956043

82944
g3 + · · ·

]
, (3.20)

Im E1 = −

√
25

π(−g)3
e

1
3g

[
1 +

371

24
g − 3371

1152
g2 +

33467903

82944
g3 + · · ·

]
, (3.21)

dTo our knowledge, the application of summation methods to quartic anharmonic oscillator first
was studied in Ref. 17. In Ref. 10 Loeffel et al. proved rigorously that the energy of quartic

anharmonic oscillator with g > 0 converge to the correct eigenvalues via Pade approximants. In

Ref. 11 Graffi et al. used Borel summation for the quartic potential with g > 0 and proved the
convergence of the result.
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Im E2 = −

√
29

π(−g)5
e

1
3g

[
1 +

851

24
g +

262717

1152
g2 +

69337223

82944
g3 + · · ·

]
, (3.22)

for N = 0, 1, 2, respectively. Imaginary part of the energies for N = 0, 1 have

been computed in Ref. 4 by using both of the functions A(E, g) and B(E, g). Our

expansions are in agreement with their results.

4. Conclusions

Unlike the first impression, already from the first coefficients of usual perturbative

expansion one can get more information about an observable. Like nonperturbative

effects to the system and large order correction terms to the perturbative expansion.

The only question is how to extract the information out of it in a systematic way.

Here, we considered cubic and quartic anharmonic potentials both of which

have a local minima. Since the potentials are unbounded, a particle initially at the

local minima will decay and its energy levels are complex. The complex part of

the energy is associated with the instanton effects. Here, we explicitly calculated

the fluctuation terms of one-instanton sector for various energy levels by using the

Dunne–Ünsal relation and, therefore, we were able to write the imaginary part of

energy for one-instanton contribution. Moreover, the instanton fluctuation terms

we obtained here are related to the correction terms to the factorially growing large

order coefficients of the perturbative sector by dispersion relations.4,19 Therefore,

already from the early terms of the perturbative expansion around a minima we can

get information about the correction terms to the factorially growing large order

coefficients of the same expansion.

Here, we only derived one-instanton contributions to the energy eigenvalue but

higher instanton contributions can also be calculated by using the perturbative

data and Eq. (3.4) for both cubic and quartic anharmonic potentials. It would

be interesting to extend this analysis to higher order anharmonic oscillators. So

far it has only been shown that the Dunne–Ünsal relation works for potentials of

order ≤ 4. It has been pointed out in Ref. 1 that the Dunne–Ünsal relation is not

satisfied for higher order anharmonic potentials for given generalized quantization

conditions. This opens up a possibility for a generalization of the relation.

Acknowledgments

The paper is based on a talk given by K. Tezgin at the International Conference

on Quantum Science and Applications (ICQSA-2016), May 25–27, 2016, Eskise-

hir, Turkey. K. Tezgin thanks to Gerald Dunne for many valuable discussions and

suggestions. This work has been mostly completed at Max Planck Institute for

Gravitational Physics (Albert Einstein Institute) and K. Tezgin is very grateful for

the hospitality of the Institute during his visit. I. Gahramanov would like to thank

the Institut des Hautes Études Scientifiques, IHES (Bures-sur-Yvette, France) and

1750033-9

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
7.

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

E
W

 Y
O

R
K

 U
N

IV
E

R
SI

T
Y

 o
n 

02
/2

0/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 17, 2017 14:32 IJMPA S0217751X17500336 page 10

I. Gahramanov & K. Tezgin

Istanbul Center for Mathematical Sciences (Istanbul, Turkey) where a part of the

work was done for the warm hospitality.

References

1. I. Gahramanov and K. Tezgin, Phys. Rev. D 93, 065037 (2016), arXiv:1512.08466
[hep-th].

2. J. Zinn-Justin and U. D. Jentschura, Ann. Phys. 313, 197 (2004), arXiv:quant-ph/
0501136.

3. J. Zinn-Justin and U. D. Jentschura, Ann. Phys. 313, 269 (2004), arXiv:quant-ph/
0501137.

4. U. D. Jentschura, A. Surzhykov and J. Zinn-Justin, Ann. Phys. 325, 1135 (2010).
5. J. Zinn-Justin, Int. Ser. Monogr. Phys. 77, 1 (1989).
6. G. V. Dunne and M. Unsal, WKB and resurgence in the Mathieu equation,

arXiv:1603.04924 [math-ph].
7. G. V. Dunne and M. Unsal, Phys. Rev. D 89, 105009 (2014), arXiv:1401.5202 [hep-th].
8. G. V. Dunne and M. Unsal, Phys. Rev. D 89, 041701 (2014), arXiv:1306.4405 [hep-th].
9. T. Misumi, M. Nitta and N. Sakai, J. High Energy Phys. 1509, 157 (2015), arXiv:1507.

00408 [hep-th].
10. J. J. Loeffel, A. Martin, B. Simon and A. S. Wightman, Phys. Lett. B 30, 656 (1969).
11. S. Graffi, V. Grecchi and B. Simon, Phys. Lett. B 32, 631 (1970).
12. U. D. Jentschura and J. Zinn-Justin, Appl. Numer. Math. 60, 1332 (2010).
13. G. Alvarez, Phys. Rev. A 37, 4079 (1988).
14. H. Kleinert and I. Mustapic, Int. J. Mod. Phys. A 11, 4383 (1996), arXiv:quant-ph/

9502027.
15. J. Zinn-Justin and U. D. Jentschura, J. Phys. A: Math. Theor. 43, 425301 (2010).
16. U. D. Jentschura, A. Surzhykov and J. Zinn-Justin, Phys. Rev. Lett. 102, 011601

(2009), arXiv:0901.4964 [math-ph].
17. C. E. Reid, Int. J. Quantum Chem. 1, 521 (1967).
18. C. M. Bender and T. T. Wu, Phys. Rev. 184, 1231 (1969).
19. C. M. Bender and G. V. Dunne, J. Math. Phys. 40, 4616 (1999), arXiv:quant-ph/

9812039.
20. A. I. Vainshtein, Decaying systems and divergence of perturbation theory, Novosi-

birsk Report, December 1964, reprinted in Russian, with an English translation by
M. Shifman, in these Proceedings of QCD2002/ArkadyFest.

21. J. E. Drummond, J. Phys. A 14, 1651 (1981).
22. G. Alvarez and C. Casares, J. Phys. A 33, 5171 (2000).
23. G. Alvarez and C. Casares, J. Phys. A 33, 2499 (2000).
24. G. Alvarez, C. J. Howls and H. J. Silverstone, J. Phys. A 35, 4017 (2002).

1750033-10

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
7.

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

E
W

 Y
O

R
K

 U
N

IV
E

R
SI

T
Y

 o
n 

02
/2

0/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.

https://arxiv.org/abs/1512.08466
https://arxiv.org/abs/quant-ph/0501136
https://arxiv.org/abs/quant-ph/0501136
https://arxiv.org/abs/quant-ph/0501137
https://arxiv.org/abs/quant-ph/0501137
https://arxiv.org/abs/1603.04924
https://arxiv.org/abs/1401.5202
https://arxiv.org/abs/1306.4405
https://arxiv.org/abs/1507.00408
https://arxiv.org/abs/1507.00408
https://arxiv.org/abs/quant-ph/9502027
https://arxiv.org/abs/quant-ph/9502027
https://arxiv.org/abs/0901.4964
https://arxiv.org/abs/quant-ph/9812039
https://arxiv.org/abs/quant-ph/9812039

	Introduction
	Generalized Quantization Conditions
	Fluctuation Factors
	Cubic anharmonic oscillator
	Quartic anharmonic oscillator

	Conclusions

