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Consider the eigenvalue problem
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 are strictly positive and
continuous on 
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 has an absolutely continuous
derivative; 
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Such problems are encountered in mechanics (see,
e.g., [1–6]). If 

 

q

 

(

 

x

 

)

 

 in Eq. (1) is nonnegative and strictly
decreasing on [0, 

 

l

 

] and boundary conditions (2) are

such that 

 

α

 

 = 

 

β

 

 = 0, 

 

γ

 

 = , 

 

a

 

 = –1, 

 

b

 

 = 

 

c

 

 = 0, 

 

d

 

 = 1, and

 

l

 

 = 1, then boundary value problem (1), (2) describes
the transverse vibrations of a vertical (inhomogeneous)
rod with a clamped upper end and a load attached to the
lower end and with the elastic reactions to bending and
tension taken into account [1]. In the case of a homoge-
neous rod, when 
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∈

 

 [0, 1], this problem was
described in [2] and was studied in [3], where it was
shown that the first eigenvalue is positive and simple. In
[1] it was proved that the properties of eigenfrequencies
and the corresponding harmonics are quite similar to
the spectral properties of a classical string as described
by Sturm. If 
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 1
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 0
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∈
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l

 

]

 

 in Eq. (1)

p x( )y''( )'' q x( )y'( )'– λρ x( )y, 0 x l,< <=

y' 0( ) αcos py''( ) 0( ) αsin– 0,=

y 0( ) βcos Ty 0( ) βsin+ 0,=

y' l( ) γcos py''( ) l( ) γsin+ 0,=

aλ b+( )y l( ) cλ d+( )Ty l( )– 0,=

π
2
---

π
2
---

and if boundary conditions (2) are such that α = β = 0,

γ = , a = –M (M = const > 0), b = c = 0, and d = 1, then

the problem corresponds to an inhomogeneous rod with
an attached mass M. In this case, upper and lower
bounds for the first eigenvalue were obtained in [4].

In what follows, it is assumed that

(3)

In this paper, we study the properties of eigenvalues
of boundary value problem (1), (2) and the oscillation
properties of its eigenfunctions.

1. SOME AUXILIARY RESULTS

To study the oscillation properties of eigenfunctions
of problem (1), (2), we use the Prüfer-type transforma-
tion [7, 8]

(4)

Equation (1) can be written in the equivalent matrix
form

(5)

where

π
2
---

σ bc ad– 0.>=

y x( ) r x( ) ψ x( ) θ x( ),cossin=

y' x( ) r x( ) ψ x( ) ϕ x( ),sincos=

py''( ) x( ) r x( ) ψ x( ) ϕ x( ),coscos=

Ty x( ) r x( ) ψ x( ) θ x( ).sinsin=

U' MU ,=

U

y

y'

py''

Ty⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

, M

0   1   0   0

0   0   
1
p
---   0

0   q   0   1

λρ   0   0   0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.= =

MATHEMATICS

Some Spectral Properties of a Boundary Value Problem
with a Spectral Parameter in the Boundary Condition

N. B. Kerimova and Z. S. Alievb

Presented by Academician V.A. Il’in June 25, 2006

Received May 23, 2006

DOI: 10.1134/S106456240606024X

a Institute of Mathematics and Mechanics, National 
Academy of Sciences of Azerbaijan, Baku, Azerbaijan
b Baku State University, Baku, Azerbaijan



884

DOKLADY MATHEMATICS      Vol. 74      No. 3      2006

KERIMOV, ALIEV

Setting w(x) = (x) and applying (4) to (5), we
obtain a system of first-order differential equations for
r, w, θ, and ϕ:

The following assertions were stated and proved in [8].
Theorem 1. Let y(x, λ) be a nontrivial solution to

problem (1), (2a), (2b), (2c) with λ > 0.
Then the Jacobian J[y] = r3sinψcosψ of transforma-

tion (4) is nonzero for x ∈ (0, l).
Theorem 2. Let y(x, λ) be a nontrivial solution to

problem (1), (2a), (2b), (2c) with λ > 0, and let θ(x, λ)
and ϕ(x, λ) be the corresponding functions in (4).

Then θ(0, λ) = β –  and ϕ(0, λ) = α, where α = 0 if

ψ(0, λ) = .

Theorem 3. Let y(x, λ) be a nontrivial solution to
problem (1), (2a), (2b), (2c) with λ > 0, and let θ(x, λ)
be the corresponding function in (4).

Then θ(l, λ) is a continuous and strictly increasing
function of λ.

We introduce the boundary condition

(2d')

Along with problem (1), (2), we consider boundary
value problem (1), (2a), (2b), (2c), (2d'). For the latter
problem, the oscillation properties of its eigenfunctions
corresponding to positive eigenvalues were studied in
detail in [8]. In this context, the following two cases
were excluded from consideration in [8]: (i) α = γ = 0

and β = δ = ; and (ii) the arbitrary three parameters

out of α, β, γ, and δ are equal to . Note that, in fact,

only the case β = δ =  is to be excluded.

ψcot

r' 2ψ θ ϕ+( )sinsin q
1
p
---+⎝ ⎠

⎛ ⎞ ψ 2ϕsincos
2

+=

---+ λρ ψ 2θsinsin
2 r

2
---,

w' w2 θ ϕsincos–
1
2
--- q

1
p
---+⎝ ⎠

⎛ ⎞ w 2ϕsin+=

+ θ ϕcossin
λρ
2

------w 2θ,sin–

θ' w ϕ θsinsin–= λρ θ,cos
2

+

ϕ'
1
p
--- ϕcos

2
q ϕsin

2
–

1
w
---- θ ϕ.sinsin–=

π
2
---

π
2
---

y l( ) δcos Ty l( ) δsin– 0, δ 0
π
2
---, .∈=

π
2
---

π
2
---

π
2
---

Theorem 4 [8]. The spectrum of boundary value

problem (1), (2a), (2b), (2c), (2d') except for the case

where β = δ =  consists of an infinite sequence of

positive simple eigenvalues  <  < … <  < ….

Moreover, the eigenfunction (x) corresponding to an

eigenvalue  has exactly n – 1 simple zeros in the

interval (0, l), and T (x) has exactly n zeros on [0, l].

Remark 1. When β = δ = , the first eigenvalue of

problem (1), (2a), (2b), (2c), (2d') is zero and the corre-
sponding eigenfunction is a constant, and, for n ≥ 2,
Theorem 4 holds true.

2. BASIC PROPERTIES OF THE SOLUTION
TO PROBLEM (1), (2a), (2b), (2c), (2d')

Lemma 1. For every fixed λ ∈ �, problem (1), (2a),
(2b), (2c) has a unique nontrivial solution y(x, λ) up to
a constant factor.

Remark 2. Without losing generality, for every
fixed x ∈ [0, l], the function y(x, λ) can be assumed to
be an entire function of λ.

Theorem 5. Let y(x, λ) be a nontrivial solution to
problem (1), (2a), (2b), (2c) and one of the following con-

ditions be satisfied: (i) λ < 0 or (ii) λ = 0 and β ∈ 0, .

Then the Jacobian J[y] = r3sinψcosψ of transfor-
mation (4) is nonzero for x ∈ (0, l).

Let y(x, λ) be a nontrivial solution to problem (1),

(2a), (2b), (2c) and λ ∈ �\{0} or λ = 0 and β ∈ 0, .

Assume that θ(x, λ) and ϕ(x, λ) are the corresponding
functions in (4). Without loss of generality, the initial
values of these functions can be specified as follows

(see Theorem 2): θ(0, λ) = β – sgnsinψ(0, λ) and

ϕ(0, λ) = α, where α = 0 if ψ (0) = .

Obviously, the eigenvalues µn = λn(0) and νn = λn(0)
(n ∈ �) of problem (1), (2a), (2b), (2c), (2d') for δ = 0

and δ =  are the zeros of the entire functions y(l, λ)

and Ty(l, λ), respectively. Note that Ty(l, λ)/y(l, λ) is

defined for λ ∈ D ≡ µn – 1, µn), where µ0 = –∞.

-⎝
⎛

π
2
---⎠

⎞

λ1
δ λ2

δ λn
δ

v n
δ

λn
δ

v n
δ

π
2
---

π
2
---⎠

⎞

π
2
---⎠

⎞

⎝
⎛ π

2
---⎠

⎞

π
2
---

π
2
---

(
n 1=

∞

∪
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Lemma 2. In each interval (µn – 1, µn), n ∈ �, the

function  is continuous and strictly increasing.

Lemma 3. It holds that

Remark 3. Theorem 4 and Lemmas 2 and 3 imply

that, if λ < 0 or λ = 0 and β ∈ 0, , then  <

0; and if λ = 0 and β = , then Ty(l, λ) = 0; moreover,

ν1 < µ1 < ν2 < µ2 < ….

Denote by m(λ) and s(λ) the numbers of zeros of
y(x, λ) and Ty(x, λ) in the interval (0, l), respectively.

Theorem 6. The following assertions are true:
(a) If λ ∈ (µn – 1, µn], n ∈ �, then m(λ) = n – 1.
(b) If β ∈ [0, π/2) and λ ∈ (µn – 1, µn], n ∈ �, then

s(λ) = n – 1 for λ ∈ (µn – 1, νn] and s(λ) = n for λ ∈ (νn, µn].
(c) If β = π/2 and λ ∈ (µ0, ν1) ∪ (ν1, µ1], then s(λ) = 0,

and if β = π/2 and λ ∈ (µn – 1, µn] for n ≥ 2, then s(λ) =
n – 2 for λ ∈ (µn – 1, νn] and s(λ) = n – 1 for λ ∈ (νn, µn].

The proof of Theorem 6 is based on Theorems 1, 3,
and 5 and Lemmas 2 and 3.

3. MAIN RESULTS

Lemma 4. The eigenvalues of boundary value prob-
lem (1), (2) are real.

Lemma 5. All the eigenvalues of boundary value
problem (1), (2) are simple and form at most a count-
able set without a finite limit point.

When c ≠ 0, the number N is determined by the ine-

quality µN – 1 < –  ≤ µN.

Theorem 7. The eigenvalues of boundary value
problem (1), (2) form an infinitely increasing sequence
λ1, λ2, …, λn, … and the corresponding eigenfunctions
have the following oscillation properties:

(a) If c = 0, then the eigenfunction yn(x) correspond-
ing to an eigenvalue λn has exactly n – 1 simple zeros
in the interval (0, l).

(b) If c ≠ 0, then the eigenfunction yn(x) correspond-
ing to an eigenvalue λn has n – 1 simple zeros in the
interval (0, l) for n ≥ N and has exactly n – 2 simple
zeros in this interval for n > N.

Proof sketch of Theorem 7. To prove the existence
of eigenvalues, it is sufficient to show that the equation

(6)

has a solution.

Ty l λ,( )
y l λ,( )

-------------------

Ty l λ,( )
y l λ,( )

-------------------⎝ ⎠
⎛ ⎞

λ ∞–→
lim ∞.–=

π
2
---⎠

⎞ Ty l λ,( )
y l λ,( )

-------------------

π
2
---

d
c
---

Ty l λ,( )
y l λ,( )

------------------- aλ b+
cλ d+
---------------=

By Lemma 2, the function  is continuous

and strictly increasing in the interval (µn – 1, µn), n ∈ �.
Lemma 3 and the equality y(l, µn) = 0, n ∈ � imply that

For , we have  = – . Since

σ > 0, we conclude that  is strictly decreasing

in the interval (–∞, +∞) if c = 0. If c ≠ 0, the function

 is strictly decreasing in each of the intervals

–∞, –  and , +∞ ; moreover,

Let c = 0, or let c ≠ 0 and –  ∉ (µn – 1, µn]. The

unique solution  ∈ (µn – 1, µn) to Eq. (6) with c = 0 or
c ≠ 0 and n < N is the nth eigenvalue of boundary value
problem (1), (2).

Let c ≠ 0 and –  ∈ (µN – 1, µN). In each of the inter-

vals µN – 1, –  and , µN , Eq. (6) has the unique

solution λN and λN + 1, respectively.

When c ≠ 0 and –  = µN, we have λN ∈ (µN – 1, µN)

and λN + 1 = µN.

When c ≠ 0 and n > N, the unique solution  to
Eq. (6) in (µn – 1, µn] is the (n + 1)st eigenvalue of prob-
lem (1), (2).

Assertions (a) and (b) in Theorem 7 follow directly
from Theorem 6.

Let τ0 be defined as τ0 = .

Theorem 8. Let  be the eigenvalues of
boundary value problem (1), (2).

Then λn > 0 for n ≥ 3. Moreover, the following asser-
tions hold true.

(a) If cd > 0 and  < τ0, then λ1 < λ2 < 0.

(b) If cd > 0 and  = τ0, then λ1 < λ2 = 0.

(c) If cd > 0 and  > τ0, then λ1 < 0 < λ2.

Ty l λ,( )
y l λ,( )

-------------------

Ty l λ,( )
y l λ,( )

-------------------
λ µn 1– 0+→

lim ∞, Ty l λ,( )
y l λ,( )

-------------------
λ µn 0–→

lim– +∞.= =

aλ b+( )
cλ d+( )

-------------------- aλ b+
cλ d+
---------------⎝ ⎠

⎛ ⎞ ' σ
cλ d+( )2

----------------------

aλ b+( )
cλ d+( )

--------------------

aλ b+( )
cλ d+( )

--------------------

-⎝
⎛ d

c
---⎠

⎞ d
c
---–⎝

⎛
⎠
⎞

aλ b+
cλ d+
---------------

λ d
c
---– 0–→

lim ∞, aλ b+
cλ d+
---------------

λ d
c
---– 0+→

lim– +∞.= =

d
c
---

λn*

d
c
---

-⎝
⎛ d

c
---⎠

⎞ d
c
---–⎝

⎛
⎠
⎞

d
c
---

λn*

Ty l 0,( )
y l 0,( )

-------------------

λn{ }n 1=
∞

b
d
---

b
d
---

b
d
---
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(d) If d = 0, then λ1 < 0 < λ2.

(e) If cd < 0 and  < τ0, then λ1 < 0 < λ2.

(f) If cd < 0 and  = τ0, then λ1 = 0.

(g) If cd < 0 and  > τ0, then λ1 > 0.

(h) If c = 0 and  < τ0, then λ1 < 0 < λ2.

(i) If c = 0 and  = τ0, then λ1 = 0.

(j) If c = 0 and  > τ0, then λ1 > 0.

The proof of Theorem 8 is based on Lemmas 2, 3
and Theorem 7.

Remark 4. Note that the number of zeros of Tyn(x),
n ∈ � can be determined in the same manner. For

example, let cd > 0 and < τ0. By Theorem 8, we have

λ1 < λ2 < 0 and λn > 0 for n ≥ 3. Theorem 7 implies that

λn ∈ (µn – 2, νn – 1) for n ≥ 3. Then, by Theorem 6, we
obtain the following results:

(i) If β ∈ 0, , then s(λ1) = 0 and s(λn) = n – 2.

(ii) If β = , then s(λ1) = s(λ2) = 0 and s(λn) = n – 3

for n ≥ 3.
Cases (b)–(j) can be considered in the same manner

(see Theorem 8).
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