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Abstract: In this paper we consider the problem

yıv + p2(x)y′′ + p1(x)y′ + p0(x)y = λy, 0 < x < 1,

y(s)(1)− (−1)σy(s)(0) +
s−1∑

l=0
αs,ly(l)(0) = 0, s = 1, 2, 3,

y(1)− (−1)σy(0) = 0,

where λ is a spectral parameter; pj (x) ∈ L1(0, 1), j = 0, 1, 2, are complex-valued functions; αs,l, s = 1, 2, 3,
l = 0, s − 1, are arbitrary complex constants; and σ = 0, 1. The boundary conditions of this problem are regular,
but not strongly regular. Asymptotic formulae for eigenvalues and eigenfunctions of the considered boundary
value problem are established in the case α3,2 + α1,0 6= α2,1. It is proved that the system of root functions of this
spectral problem forms a basis in the space Lp(0, 1), 1 < p < ∞, when α3,2 +α1,0 6= α2,1, pj (x) ∈ W j

1 (0, 1), j = 1, 2,
and p0(x) ∈ L1(0, 1); moreover, this basis is unconditional for p = 2.
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1. Introduction

It is known [7, 14, 26] that the system of root functions of an arbitrary even order differential operator with strongly
regular boundary conditions forms an unconditional basis in L2. However, if we put aside the works which cover the
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block-basis property (or the basis property with bracket) of a system of root functions, see e.g. [28], then the basicity
in Lp, 1 < p < ∞, of the system of root functions of ordinary differential operators with not strongly regular boundary
conditions has not been studied enough. An example of a differential operator with regular boundary conditions (but not
strongly regular) whose root functions do not form a basis in the space L2 was given in [14].

In 1976, N.I. Ionkin [11] studied a non-classic problem for heat conduction in a homogeneous matter. By separation of
variables, this problem is reduced to the boundary value problem

−y′′ = λy, y(0) = 0, y′(0) = y′(1),

whose boundary conditions are regular but not strongly regular. All eigenvalues of this problem, beginning from the
second one, are double multiples and the general number of associated functions is infinite. Nevertheless, it was
established that the system of root functions of this problem chosen in a special way forms an unconditional basis
in L2(0, 1).

In [13], it was established that, under conditions q(x) ∈ C (4)[0, 1] and q(1)− q(0) 6= 0, all eigenvalues of the differential
operator generated by the expression l(y) = y′′ + q(x)y, x ∈ (0, 1), and periodic (antiperiodic) boundary conditions,
starting from some number are simple and the root functions of this operator form an unconditional basis of L2. Note
that periodic and antiperiodic boundary conditions are regular, but not strongly regular.

A.S. Makin [16–21], P.B. Djakov and B.S.Mityagin [3–6] have investigated in detail some spectral properties of Sturm–
Liouville operators with not strongly regular boundary conditions. The existence of a wide class of boundary value
problems for second order ordinary differential operators with regular but not strongly regular boundary conditions,
whose system of root functions does not form a basis in L2 is established in the paper [16]. Some incisive results on the
absence of the basis property were obtained in [3]. In particular, in [3] examples of potentials, with arbitrary smoothness
such that the corresponding system of root functions does not contain a basis in L2, are given.

It was proved in [17] that the system of root functions of the differential operator

{
l(y) = y′′ + q(x)y,
y′(1)− (−1)σy′(0) + γy(0) = 0, y(1)− (−1)σy(0) = 0,

(1)

forms an unconditional basis of the space L2(0, 1), where q(x) is an arbitrary complex-valued function from the class
L1(0, 1), γ is an arbitrary nonzero complex constant and σ = 0, 1. Under the condition γ = 0 (periodic and antiperiodic
boundary conditions) in [4, 18], necessary and sufficient conditions of unconditional basicity in L2(0, 1) of the system
of root functions of differential operator (1) are obtained in terms of the Fourier coefficients of the potential q(x), see
also [8, 15, 22, 23, 25, 29]. Note that in [4], the class of potentials considered is much wider (the proof is given in [5]).
Some other interesting results about Riesz basicity of root functions of such operators with trigonometric polynomial
potentials were obtained in [4, 5]. Moreover, recently, P.B.Djakov and B.S. Mityagin [6] proved a general criterion for
basicity in terms of the Fourier coefficients of the potential (without any restriction on the class of potentials, even for
distribution potentials). We can also refer to [2, 24, 30–32] where spectral properties of boundary-value problems for
ordinary differential operators with regular boundary conditions (but not strongly regular) are studied.

One of the effective ways of investigation of spectral properties of differential operators is the method worked out
by V.A. Ilin and his followers (V.D. Budaev, I.S. Lomov, V.M.Kurbanov, A.S. Makin and others). The present paper was
stimulated by these investigations, see [10].

Henceforward, by L we denote a differential operator generated by the differential expression

l(y) = yıv + p2(x)y′′ + p1(x)y′ + p0(x)y, x ∈ (0, 1), (2)

and the boundary conditions

Us(y) ≡ y(s)(1)− (−1)σy(s)(0) +
s−1∑

l=0

αs,ly(l)(0) = 0, s = 1, 2, 3,

U0(y) ≡ y(1)− (−1)σy(0) = 0,

(3)
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where pj (x) ∈ L1(0, 1), j = 0, 1, 2, are complex-valued functions; αs,l, s = 1, 2, 3, l = 0, s − 1, are arbitrary complex
constants; and σ = 0, 1. It is easy to verify that boundary conditions (3) are regular, but not strongly regular.

Usually, in order to investigate spectral properties of differential operators with not strongly regular boundary conditions,
more exact asymptotic formulae for eigenvalues and eigenfunctions are required. In this paper, such asymptotic formulae
for eigenvalues and eigenfunctions of the differential operator L are established, and the basicity of the system of root
functions of this operator is investigated in the space Lp(0, 1), 1 < p < ∞.

Before we formulate the basic results of this paper we introduce some notations. Assume that W j
1 (0, 1), j = 1, 2, are

Sobolev spaces, W 0
1 (0, 1) ≡ L1(0, 1) and

c0 =
∫ 1

0
p2(ξ)dξ, (4)

dn =
∫ 1

0
p2(ξ)e2(2n−σ )πiξdξ, d−n =

∫ 1

0
p2(ξ)e−2(2n−σ )πiξdξ, (5)

εn = |dn|+ |d−n|+ n−1. (6)

The following assertions are the basic results of this paper.

Theorem 1.1.
Let pj (x) ∈ L1(0, 1), j = 0, 1, 2, be arbitrary complex-valued functions and let α3,2 + α1,0 6= α2,1. Then all eigenvalues
of differential operator (2)–(3), except for a finite number, are simple and form two infinite sequences λn,1, n = 1, 2, . . . ,
and λn,2, n = 1, 2, . . . Moreover, for sufficiently large numbers n, the asymptotic formulae

λn+n1,1 = ((2n − σ )π)4
{

1 + 2(−1)σα2,1 − c0

((2n − σ )π)2 +O(n−2εn)
}
,

λn+n2,2 = ((2n − σ )π)4
{

1 + 2(−1)σ (α3,2 + α1,0)− c0

((2n − σ )π)2 +O(n−2εn)
}
,

(7)

are valid, where n1 and n2 are certain integers. Furthermore, for sufficiently large numbers n, the corresponding
eigenfunctions un,1(x) and un,2(x), n = 1, 2, . . . , have the following asymptotic formulae:

un1+n,1(x) =
√

2 sin (2n − σ )πx +O(εn), un2+n,2(x) =
√

2 cos (2n − σ )πx +O(εn). (8)

Theorem 1.2.
Let pj (x) ∈ W j

1 (0, 1), j = 0, 1, 2, be arbitrary complex-valued functions and let α3,2 + α1,0 6= α2,1. Then the system of root
functions of differential operator (2)–(3) forms a basis in the space Lp(0, 1), 1 < p < ∞, and this basis is unconditional
for p = 2.

Corollary 1.3.
Let all conditions of Theorem 1.2 be fulfilled, and n1, n2 be integers from Theorem 1.1. Then n1 + n2 = 1 − σ and we
can choose n1 = 0 and n2 = 1− σ.

2. Some auxiliary results

Let
S0 =

{
ρ ∈ C : 0 ≤ argρ ≤ π

4

}
, (9)

where C is the set of complex numbers. We denote by wk , k = 1, 4, different 4-th roots of −1. It is known that,
see [27, Chapter II, § 4.2], the numbers wk , k = 1, 4, can be ordered in such a way that for all ρ ∈ S0 the inequalities

<(ρw1) ≤ <(ρw2) ≤ <(ρw3) ≤ <(ρw4) (10)
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hold, where <z means the real parts of z. Henceforward, the numbers wk , k = 1, 4, will be such that for all ρ ∈ S0 the
inequalities (10) are valid. It was proved that in this case the numbers wk , k = 1, 4, can be determined by means of
equalities, see [27, Chapter II, § 4.8],

w1 = e3πi/4, w2 = e−3πi/4, w3 = eπi/4, w4 = e−πi/4. (11)

It is easy to see that
w1 = −w4, w2 = −w3. (12)

Lemma 2.1.
In S0 the following inequalities are valid:

<(ρw1) ≤ −
√

2
2 |ρ|, <(ρw4) ≥

√
2

2 |ρ|. (13)

Proof. By (12), it suffices to prove the first inequality in (13). Since ρ ∈ S0, it holds ρ = |ρ|eiθπ/4 where 0 ≤ θ ≤ 1.
Consequently, from (11)

<(ρw1) = |ρ| · <
(
e(3+θ)πi/4) = −|ρ| · cos 1− θ

4 π ≤ −
√

2
2 |ρ|.

Consider the domain obtained from the section S0, see (9), by a translation ρ 7→ ρ − c, where c is a fixed complex
number. This new sector with its vertex at the point ρ = −c will be denoted by T0. Obviously, for the new section T0

the inequalities (10) and (13) can be rewritten in the forms

<((ρ+ c)w1) ≤ <((ρ+ c)w2) ≤ <((ρ+ c)w3) ≤ <((ρ+ c)w4), (14)

<((ρ+ c)w1) ≤ −
√

2
2 |ρ+ c|, <((ρ+ c)w4) ≥

√
2

2 |ρ+ c|. (15)

Fix such a domain T0. It is known, see [27, Chapter II, § 4.5–4.6], that the equation

l(y) + ρ4y = 0 (16)

has, for the region T0 of complex ρ-plane, four linearly independent solutions yk (x, ρ), k = 1, 4, which are regular for
ρ ∈ T0 with sufficiently large |ρ|, and which, with their derivatives satisfy the integro-differential equations

dmyk (x, ρ)
dxm = ρmwm

k eρwk x + 1
4ρ3

∫ x

0

∂mK1(x, ξ, ρ)
∂xm Mξ (yk )dξ −

1
4ρ3

∫ 1

x

∂mK2(x, ξ, ρ)
∂xm Mξ (yk )dξ, m = 0, 3, (17)

where

K1(x, ξ, ρ) =
k∑

α=1

wαeρwα (x−ξ), K2(x, ξ, ρ) =
4∑

α=k+1

wαeρwα (x−ξ), (18)

Mx (y) = p2(x)y′′(x) + p1(x)y′(x) + p0(x)y(x). (19)

Moreover, it is known [27, Chapter II, § 4.5] that

dmyk (x, ρ)
dxm = ρmeρwk xzk,m(x, ρ), (20)
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where zk,m(x, ρ) is an analytic function of ρ and it satisfies

zk,m(x, ρ) = wm
k +O(ρ−1), k = 1, 4, m = 0, 3. (21)

From (17), (19) and (20), we have

zk,m(x, ρ) = wm
k + 1

4ρ

∫ x

0
e−ρwk (x−ξ)ρ−m ∂

mK1(x, ξ, ρ)
∂xm

2∑

j=0

pj (ξ)
ρ2−j zk,j (ξ, ρ)dξ

− 1
4ρ

∫ 1

x
e−ρwk (x−ξ)ρ−m ∂

mK2(x, ξ, ρ)
∂xm

2∑

j=0

pj (ξ)
ρ2−j zk,j (ξ, ρ)dξ.

Taking into account expressions (18) of the functions K1(x, ξ, ρ) and K2(x, ξ, ρ), we have the representation

zk,m(x, ρ) = wm
k + wm+1

k
4ρ

∫ x

0

2∑

j=0

pj (ξ)
ρ2−j zk,j (ξ, ρ)dξ + 1

4ρ

k−1∑

α=1

wm+1
α

∫ x

0
eρ(wα−wk )(x−ξ)

2∑

j=0

pj (ξ)
ρ2−j zk,j (ξ, ρ)dξ

− 1
4ρ

4∑

α=k+1

wm+1
α

∫ 1

x
eρ(wα−wk )(x−ξ)

2∑

j=0

pj (ξ)
ρ2−j zk,j (ξ, ρ)dξ.

(22)

Note that by (14) we have

<(ρ(wα − wβ)) = <((ρ+ c)(wα − wβ))−<(c(wα − wβ)) ≤ 2|c|,

where 1 ≤ α ≤ β ≤ 4. From here and (21) we obtain

∫ x

0
pj (ξ)zk,j (ξ, ρ)eρ(wα−wk )(x−ξ)dξ = O(1), α ≤ k;

∫ 1

x
pj (ξ)zk,j (ξ, ρ)eρ(wα−wk )(x−ξ)dξ = O(1), α ≥ k,

where k = 1, 4 and j = 0, 1, 2. Consequently, it follows from (22) that

zk,m(x, ρ) = wm
k + wm+1

k
4ρ

∫ x

0

2∑

j=1

pj (ξ)
ρ2−j zk,j (ξ, ρ)dξ + 1

4ρ

k−1∑

α=1

wm+1
α

∫ x

0
eρ(wα−wk )(x−ξ)

2∑

j=1

pj (ξ)
ρ2−j zk,j (ξ, ρ)dξ

− 1
4ρ

4∑

α=k+1

wm+1
α

∫ 1

x
eρ(wα−wk )(x−ξ)

2∑

j=1

pj (ξ)
ρ2−j zk,j (ξ, ρ)dξ +O(ρ−3).

(23)

Thus, in view of (23), the formulae

zk,m(0, ρ) = wm
k −

1
4ρ

4∑

α=k+1

wm+1
α Bα,k (ρ) +O(ρ−3),

zk,m(1, ρ) = wm
k + wm+1

k
4ρ

2∑

j=1

1
ρ2−j

∫ 1

0
pj (ξ)zk,j (ξ, ρ)dξ + 1

4ρ

k−1∑

α=1

wm+1
α Bα,k (ρ) +O(ρ−3),

(24)

are valid, where

Bα,k =






2∑

j=1

1
ρ2−j

∫ 1

0
pj (ξ)zk,j (ξ, ρ)e−ρ(wα−wk )ξdξ if 1 ≤ k < α ≤ 4,

2∑

j=1

1
ρ2−j

∫ 1

0
pj (ξ)zk,j (ξ, ρ)eρ(wα−wk )(1−ξ)dξ if 1 ≤ α < k ≤ 4.

(25)
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It is easy to verify that for an arbitrary function f(x) ∈ L1(0, 1),

∫ 1

0
f(ξ)eτ(1−ξ)dξ = o(1),

∫ 1

0
f(ξ)eτξdξ = o(1), |τ| → +∞,

hold for <τ ≤ c1 = const. Hence, by virtue of (25) and (21) we have

Bα,k (ρ) = o(1), α 6= k. (26)

A direct calculation using formulae (21), (24)–(25) shows that for s = 0, 3 the following equalities are valid:

z2,s(0, ρ) = ws
2 −

ws+1
4
4ρ B4,2(ρ)−

(−1)sws
2

4ρw2

∫ 1

0
p2(ξ)e2ρw2ξdξ +O(ρ−2),

z3,s(0, ρ) = ws
3 −

ws+1
4
4ρ B4,3(ρ) +O(ρ−2),

z2,s(1, ρ) = ws
2 −

ws
2

4ρw2

∫ 1

0
p2(ξ)dξ + ws+1

1
4ρ B1,2(ρ) +O(ρ−2),

z3,s(1, ρ) = ws
3 −

ws
3

4ρw3

∫ 1

0
p2(ξ)dξ + ws+1

1
4ρ B1,3(ρ) + (−1)sws

3
4ρw3

∫ 1

0
p2(ξ)e−2ρw3(1−ξ)dξ +O(ρ−2).

(27)

3. Proof of Theorem 1.1

Let

∆(ρ) =

∣∣∣∣∣∣∣∣∣

U3(y1) U3(y2) U3(y3) U3(y4)
U2(y1) U2(y2) U2(y3) U2(y4)
U1(y1) U1(y2) U1(y3) U1(y4)
U0(y1) U0(y2) U0(y3) U0(y4)

∣∣∣∣∣∣∣∣∣

, (28)

where yk (x, ρ), k = 1, 4, are the linearly independent solutions of the equation (16). It is known [27, Chapter II, § 4.9]
that if we properly choose the vertex ρ = −c of the domain T0, then the eigenvalues λ of the differential operator (2)–(3)
whose absolute values are sufficiently large have the form λ = −ρ4, where the numbers ρ are the roots of the equation

∆(ρ) = 0 (29)

in the domain T0, and the set of such points ρ includes all roots of (29) in the domain T0 except for a finite number.
By (20) for s = 0, 3 and k = 1, 4 we have

Us(yk ) = ρs
{
eρwk zk,s(1, ρ)− (−1)σzk,s(0, ρ) +

s−1∑

l=0

αs,l
ρs−l zk,l(0, ρ)

}
, (30)

where α0,−1 = α0,0 = 0. According to (15), eρw1 tends exponentially to zero and eρw4 tends exponentially to infinity.
Consequently, by (30) and (21) the following equalities are valid:

Us(y1) = −ρs
{

(−1)σz1,s(0, ρ)−
s−1∑

l=0

αs,l
ρs−l z1,l(0, ρ) +O(ρ−3)

}
, Us(y4) = ρseρw4

{
z4,s(1, ρ) +O(ρ−3)

}
. (31)
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Let

As,k (ρ) =






(−1)σz1,s(0, ρ)−
s−1∑

l=0

αs,l
ρs−l z1,l(0, ρ), if k = 1,

eρwk zk,s(1, ρ)− (−1)σzk,s(0, ρ) +
s−1∑

l=0

αs,l
ρs−l zk,l(0, ρ), if k = 2, 3,

z4,s(1, ρ), if k = 4.

(32)

By virtue of (30)–(32) we have

Us(y1) = −ρs
{
As,1(ρ) +O(ρ−3)

}
,

Us(yk ) = ρs
{
As,k (ρ) +O(ρ−3)

}
, k = 2, 3,

Us(y4) = ρseρw4
{
As,4(ρ) +O(ρ−3)

}
.

(33)

We substitute these expressions in the equation (29), see (28), and divide out the common factors ρ3, ρ2, ρ of the rows
and also the common factor eρw4 of the last column of the determinant ∆(ρ). Then the equation (29) can be written in
the form

∆1(ρ) +O(ρ−3) = 0, (34)

where

∆1(ρ) =

∣∣∣∣∣∣∣∣∣

A3,1(ρ) A3,2(ρ) A3,3(ρ) A3,4(ρ)
A2,1(ρ) A2,2(ρ) A2,3(ρ) A2,4(ρ)
A1,1(ρ) A1,2(ρ) A1,3(ρ) A1,4(ρ)
A0,1(ρ) A0,2(ρ) A0,3(ρ) A0,4(ρ)

∣∣∣∣∣∣∣∣∣

. (35)

By using the formulae (47a) and (47b) in [27, Chapter II, § 4.9], we get that if ρ is a root of equation (29) or (34), then

eρw2 − (−1)σ = O(|ρ|−1/2), eρw3 − (−1)σ = O(|ρ|−1/2). (36)

From the relations (21), (32), (36) for s = 0, 3 and k = 2, 3 we infer that

As,1(ρ) = (−1)σws
1 +O(ρ−1), As,4(ρ) = ws

4 +O(ρ−1), (37)
As,k (ρ) = (eρwk − (−1)σ )ws

k +O(ρ−1), As,k (ρ) = O(|ρ|−1/2). (38)

From (37)–(38), we deduce that the equation (34) is equivalent to

(eρw2 − (−1)σ )(eρw3 − (−1)σ )W0 +O(|ρ|−3/2) = 0, (39)

where

W0 = (−1)σ

∣∣∣∣∣∣∣∣∣

w3
1 w3

2 w3
3 w3

4
w2

1 w2
2 w2

3 w2
4

w1 w2 w3 w4

1 1 1 1

∣∣∣∣∣∣∣∣∣

= −16(−1)σ . (40)

Since w3 = −w2 and eρw2 = O(1), the equation (39) can be written in the form

(epw2 − (−1)σ )2 +O(|ρ|−3/2) = 0.

From this, we can easily get

eρw2 − (−1)σ = O(|ρ|−3/4), eρw3 − (−1)σ = O(|ρ|−3/4). (41)
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Note that, from (38) and (41) for s = 0, 3 and k = 2, 3 it follows that

As,k (ρ) = O(|ρ|−3/4). (42)

By (35), (37) and (42), the equation (34) is equivalent to

∆2(ρ) + o(ρ−2) = 0, (43)

where

∆2(ρ) =

∣∣∣∣∣∣∣∣∣

(−1)σw3
1 A3,2(ρ) A3,3(ρ) w3

4
(−1)σw2

1 A2,2(ρ) A2,3(ρ) w2
4

(−1)σw1 A1,2(ρ) A1,3(ρ) w4

(−1)σ A0,2(ρ) A0,3(ρ) 1

∣∣∣∣∣∣∣∣∣

. (44)

According to the equality (32) for s = 0, 3 and k = 2, 3 we have

As,k (ρ) = eρwk zk,s(1, ρ)− (−1)σzk,s(0, ρ) + αs,s−1

ρ zk,s−1(0, ρ) +O(ρ−2).

From here and (26)–(27) it follows

As,k (ρ) = A(k)
s,k (ρ) + B(k)

s,k (ρ) +O(ρ−2), k = 2, 3, (45)

where

A(2)
s,2(ρ) = ws

2

{
eρw2

(
1− c0

4ρw2

)
− (−1)σ

(
1− (−1)s

4ρw2
γ2(ρ)

)
+ αs,s−1

ρw2

}
,

A(3)
s,3(ρ) = ws

3

{
eρw3

(
1− c0

4ρw3
+ (−1)s

4ρw3
γ3(ρ)

)
− (−1)σ + αs,s−1

ρw3

}
,

(46)

B(2)
s,2(ρ) = ws+1

1 eρw2

4ρ B1,2(ρ) + (−1)σws+1
4

4ρ B4,2(ρ), B(3)
s,3(ρ) = ws+1

1 eρw3

4ρ B1,3(ρ) + (−1)σws+1
4

4ρ B4,3(ρ), (47)

γ2(ρ) =
∫ 1

0
p2(ξ)e2ρw2ξdξ, γ3(ρ) =

∫ 1

0
p2(ξ)e−2ρw3(1−ξ)dξ (48)

and c0 is the number defined in (4). Taking into account (47), it is easy to see that for k = 2, 3 the column(
B(k)

3,k (ρ), B
(k)
2,k (ρ), B

(k)
1,k (ρ), B

(k)
0,k (ρ)

)T is a linear combination of the first and last columns of the determinant ∆2(ρ). From
this and the asymptotic estimate

A(k)
s,k (ρ) = O(|ρ|−3/4) (49)

it follows that the equation (43), see (44), is equivalent to

∆3(ρ) + o(ρ−2) = 0, (50)

where

∆3(ρ) =

∣∣∣∣∣∣∣∣∣

(−1)σw3
1 A(2)

3,2(ρ) A(3)
3,3(ρ) w3

4
(−1)σw2

1 A(2)
2,2(ρ) A(3)

2,3(ρ) w2
4

(−1)σw1 A(2)
1,2(ρ) A(3)

1,3(ρ) w4

(−1)σ A(2)
0,2(ρ) A(3)

0,3(ρ) 1

∣∣∣∣∣∣∣∣∣

. (51)
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Let

Ak (ρ) = eρwk
(

1− c0

4ρwk

)
− (−1)σ , k = 2, 3, (52)

Es,2(ρ) = 4αs,s−1 + (−1)σ+sγ2(ρ), Es,3(ρ) = 4αs,s−1 + (−1)seρw3γ3(ρ). (53)

Hence, by (46) for s = 0, 3 and k = 2, 3 we have

A(k)
s,k (ρ) = ws

kAk (ρ) + ws
k
Es,k (ρ)
4ρwk

. (54)

We set

∆(1)(ρ) =

∣∣∣∣∣∣∣∣∣

(−1)σw3
1 w3

2 w3
3E3,3(ρ) w3

4
(−1)σw2

1 w2
2 w2

3E2,3(ρ) w2
4

(−1)σw1 w2 w3E1,3(ρ) w4

(−1)σ 1 E0,3(ρ) 1

∣∣∣∣∣∣∣∣∣

, ∆(2)(ρ) =

∣∣∣∣∣∣∣∣∣

(−1)σw3
1 w3

2E3,2(ρ) w3
3 w3

4
(−1)σw2

1 w2
2E2,2(ρ) w2

3 w2
4

(−1)σw1 w2E1,2(ρ) w3 w4

(−1)σ E0,2(ρ) 1 1

∣∣∣∣∣∣∣∣∣

, (55)

∆(3)(ρ) =

∣∣∣∣∣∣∣∣∣

(−1)σw3
1 w3

2E3,2(ρ) w3
3E3,3(ρ) w3

4
(−1)σw2

1 w2
2E2,2(ρ) w2

3E2,3(ρ) w2
4

(−1)σw1 w2E1,2(ρ) w3E1,3(ρ) w4

(−1)σ E0,2(ρ) E0,3(ρ) 1

∣∣∣∣∣∣∣∣∣

. (56)

From (51), (54)–(56) it follows

∆3(ρ) = A2(ρ)A3(ρ)W0 + A2(ρ)
4ρw3

∆(1)(ρ) + A3(ρ)
4ρw2

∆(2)(ρ)− ∆(3)(ρ)
(4ρw2)2

, (57)

where W0 is a determinant defined by the equality (40). Note that the last term in (57) is O(ρ−2). A direct calculation
using (11) shows that

∆(1)(ρ) = ∆(2)(ρ) = −16(−1)σ (α3,2 + α2,1 + α1,0). (58)

From here and (57) we deduce

∆3(ρ) = −16(−1)σ
[
A2(ρ)A3(ρ) + α3,2 + α2,1 + α1,0

4ρw2
(A3(ρ)− A2(ρ))

]
+O(ρ−2).

Consequently, the equation (50) is equivalent to

A1(ρ)A2(ρ) + α3,2 + α2,1 + α1,0

4ρw2
(A3(ρ)− A2(ρ)) +O(ρ−2) = 0.

Taking into account (52), we can rewrite the last equation in the form

[
eρw2

(
1− c0

4ρw2

)
− (−1)σ

][
e−ρw2

(
1 + c0

4ρw2

)
− (−1)σ

]
+ α3,2 + α2,1 + α1,0

4ρw2
[e−ρw2 − eρw2 ] +O(ρ−2) = 0,

or more precisely [
1 + γ

4ρw2

]
e2ρw2 − 2(−1)σeρw2 +

[
1− γ

4ρw2
+O(ρ−2)

]
= 0,
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where γ = (−1)σ (α3,2 + α2,1 + α1,0)− c0. After some simplifications, the given equation is reduced to the form

e2ρw2 − 2(−1)σ
(

1− γ
4ρw2

)
eρw2 + 1− γ

2ρw2
+O(ρ−2) = 0.

Hence, we obtain [
eρw2 − (−1)σ

(
1− γ

4ρw2

)]2

+O(ρ−2) = 0. (59)

It is easy to see that if ρ ∈ T0 is a root of equation (59), then

eρw2 − (−1)σ = O(ρ−1).

Obviously, the following equality also holds:

eρw3 − (−1)σ = O(ρ−1).

From the last two relations and (38), for s = 0, 3 and k = 2, 3 we have

As,k (ρ) = O(ρ−1). (60)

Consequently, the equation (34) is equivalent to

∆2(ρ) +O(ρ−3) = 0, (61)

where ∆2(ρ) is the determinant defined by (44).

We proved above that (43) is equivalent to (50) using (49). Repeating the same reasonings and using relation (60)
instead of (49), we conclude that (61) is equivalent to

∆3(ρ) +O(ρ−3) = 0, (62)

where ∆3(ρ) is the determinant defined by (51). We use the representation (57) for ∆3(ρ). We have eρw3 = (−1)σ +O(ρ−1).
Then, by (53), we get for s = 0, 3 and k = 2, 3, Es,k (ρ) = 4αs,s−1 + (−1)σ+sγk (ρ) + O(ρ−1). After substituting these
expressions in (56) and simple transformations we have

∆(3)(ρ) = −64(−1)σα2,1(α3,2 + α1,0) + 16(γ2(ρ) + γ3(ρ))(α3,2 − α2,1 + α1,0) + 16(−1)σγ2(ρ)γ3(ρ) +O(ρ−1).

From here, (57) and (58) we deduce that

∆3(ρ) = −16(−1)σ
{
A2(ρ)A3(ρ) + δ0

4ρw2
(A3(ρ)− A2(ρ))−

4δ1

(4ρw2)2
+O(ρ−2ε(ρ))

}
,

where

δ0 = α3,2 + α2,1 + α1,0, δ1 = α2,1(α3,2 + α1,0),
ε(ρ) = |γ2(ρ) + γ3(ρ)|+ |γ2(ρ)γ3(ρ)|+ |ρ−1|. (63)

Consequently, (62) is equivalent to

A2(ρ)A3(ρ) + δ0

4ρw2
(A3(ρ)− A2(ρ))−

4δ1

(4ρw2)2
+O(ρ−2ε(ρ)) = 0.
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Thus, according to (52), (62) is equivalent to

{
eρw
(

1− c0

4ρw

)
− (−1)σ

}{
e−ρw

(
1 + c0

4ρw

)
− (−1)σ

}

+ δ0

4ρw

{
e−ρw

(
1 + c0

4ρw

)
− eρw

(
1− c0

4ρw

)}
− 4δ1

(4ρw)2 +O(ρ−2ε(ρ)) = 0,

where w = w2. After some simplifications the given equation is reduced to the form

(
1− c0

4ρw

)(
1 + (−1)σδ0

4ρw

)
e2ρw − 2(−1)σ

(
1− c2

0 + 4δ1

2(4ρw)2

)
eρw +

(
1 + c0

4ρw

)(
1− (−1)σδ0

4ρw

)
+O(ρ−2ε(ρ)) = 0.

The last equation splits into two equations:

eρw = (−1)σ + (−1)σc0 − 2α2,1

4ρw +O(ρ−1ε(ρ)), (64)

eρw = (−1)σ + (−1)σc0 − 2(α3,2 + α1,0)
4ρw +O(ρ−1ε(ρ)). (65)

We will investigate the equation (64). By using the Roushe theorem, it can be proved in a standard way
[27, Chapter II, § 4.9] that the roots ρ ∈ T0 of (64) whose absolute values are sufficiently large, lie in the domains
Gn ⊂ T0, n = n0, n0 + 1, . . . , where Gn is the O(n−1)-neigbourhood of the point −(2n − σ )πi/w and n0 is a sufficiently
large natural number. Moreover, (64) has a unique root within each Gn, n = n0, n0 + 1, . . . The roots ρ ∈ T0 of the
equation (64) whose absolute values are sufficiently large satisfy the relation

eρw = (−1)σ +O(ρ−1). (66)

Let ρ̃ be the root of equation (64) belonging to Gn. It is obvious from (66) that

ρ̃ = − (2n − σ )πi
w + r, (67)

r = O(n−1). (68)

Suppose that dn and d−n are numbers defined by (5). According to (48), (67) and (68) we have

γ2(ρ̃) = d−n +O(n−1), γ3(ρ̃) = dn +O(n−1).

From here and (63) we deduce
ε(ρ̃) = O(εn), (69)

where εn is the number defined by (6).

Revise the form of r. From (67) it follows

(ρ̃w)−1 = −1
(2n − σ )πi +O(n−3), eρ̃w = (−1)σ

{
1 + rw +O(n−2)

}
. (70)

Writing ρ = ρ̃ in (64) and using the relations (69)–(70), after simple transformations we have

r = 2(−1)σα2,1 − c0

4w(2n − σ )πi +O(n−1εn). (71)
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Thus, by (67)–(71), within O(n−1)-neigbourhood Gn of the point zn = −(2n − σ )πi/w, n = n0, n0 + 1, . . . , equation (64)
has the unique root

ρ̃n,1 = − 1
w

{
(2n − σ )πi − 2(−1)σα2,1 − c0

4(2n − σ )πi

}
+O(n−1εn). (72)

Similarly we find that, within O(n−1)-neigbourhood Gn of the point zn, n = n0, n0 + 1, . . . , equation (65) has the unique
root

ρ̃n,2 = − 1
w

{
(2n − σ )πi − 2(−1)σ (α3,2 + α1,0)− c0

4(2n − σ )πi

}
+O(n−1εn). (73)

We seek for the eigenfunction ũn,1(x), corresponding to the eigenvalue λ = −(ρ̃n,1)4 for sufficiently large n, in the form

ũn,1(x) = −(−1)σρ−5e−ρw4
√

2
4w2(α3,2 − α2,1 + α1,0)

∣∣∣∣∣∣∣∣∣

y1(x, ρ) y2(x, ρ) y3(x, ρ) y4(x, ρ)
U3(y1) U3(y2) U3(y3) U3(y4)
U2(y1) U2(y2) U2(y3) U2(y4)
U1(y1) U1(y2) U1(y3) U1(y4)

∣∣∣∣∣∣∣∣∣
ρ=ρ̃n,1

,

or more precisely

ũn,1(x) = (−1)σρ
√

2
4w2(α3,2 − α2,1 + α1,0)

∣∣∣∣∣∣∣∣∣

−y1(x, ρ) y2(x, ρ) y3(x, ρ) e−ρw4y4(x, ρ)
−ρ−3U3(y1) ρ−3U3(y2) ρ−3U3(y3) ρ−3e−ρw4U3(y4)
−ρ−2U2(y1) ρ−2U2(y2) ρ−2U2(y3) ρ−2e−ρw4U2(y4)
−ρ−1U1(y1) ρ−1U1(y2) ρ−1U1(y3) ρ−1e−ρw4U1(y4)

∣∣∣∣∣∣∣∣∣
ρ=ρ̃n,1

. (74)

Henceforward, for simplicity of notation, we will write ρ and ε instead of ρ̃n,1 and εn, respectively. Since

yk (x, ρ) = O(1), k = 1, 2, 3, e−ρw4y4(x, ρ) = O(1), (75)

in view of (74) and (33) we have

ũn,1(x) = (−1)σρ
√

2
4w2(α3,2 − α2,1 + α1,0)

∣∣∣∣∣∣∣∣∣

−y1(x, ρ) y2(x, ρ) y3(x, ρ) e−ρw4y4(x, ρ)
A3,1(ρ) A3,2(ρ) A3,3(ρ) A3,4(ρ)
A2,1(ρ) A2,2(ρ) A2,3(ρ) A2,4(ρ)
A1,1(ρ) A1,2(ρ) A1,3(ρ) A1,4(ρ)

∣∣∣∣∣∣∣∣∣
ρ=ρ̃n,1

+ O(ρ−2). (76)

Taking into account (37), (60), (75) and (76) we have

ũn,1(x) = ρ
√

2
4ω2(α3,2 − α2,1 + α1,0)

[
y3(x, ρ)E2(ρ)− y2(x, ρ)E3(ρ)

]
+O(ρ−1), (77)

where

Ek (ρ) =

∣∣∣∣∣∣∣

w3
1 A3,k (ρ) w3

4
w2

1 A2,k (ρ) w2
4

w1 A1,k (ρ) w4

∣∣∣∣∣∣∣
, k = 2, 3.

From here and (45) we obtain

Ek (ρ) =

∣∣∣∣∣∣∣

w3
1 A

(k)
3,k (ρ) w3

4
w2

1 A
(k)
2,k (ρ) w2

4
w1 A(k)

1,k (ρ) w4

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

w3
1 B

(k)
3,k (ρ) w3

4
w2

1 B
(k)
2,k (ρ) w2

4
w1 B(k)

1,k (ρ) w4

∣∣∣∣∣∣∣
+ O(ρ−2),
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where k = 2, 3. According to (47), the last determinant is equal to zero. Consequently,

Ek (ρ) =

∣∣∣∣∣∣∣

w3
1 A

(k)
3,k (ρ) w3

4
w2

1 A
(k)
2,k (ρ) w2

4
w1 A(k)

1,k (ρ) w4

∣∣∣∣∣∣∣
+ O(ρ−2). (78)

Because of (46), for s = 0, 3 and k = 2, 3 we have

A(k)
s,k (ρ) = ws

k

{
eρwk

(
1− c0

4ρwk

)
− (−1)σ + αs,s−1

ρwk

}
+O(ρ−1ε).

From here and (72), after necessary simplifications it follows

A(k)
s,k (ρ) = ws

k
2αs,s−1 − α2,1

2ρwk +O(ρ−1ε), (79)

where s = 0, 3 and k = 2, 3. Further, from (78) and (79) we have

Ek (ρ) = 2w1

ρ (α3,2 − α2,1 + α1,0) +O(ρ−1ε), k = 2, 3.

Consequently, from (77) we obtain

ũn,1(x) =
√

2
2i (y3(x, ρ)− y2(x, ρ)) +O(ε),

or more precisely

ũn,1(x) =
√

2
2i
{
y3(x, ρ̃n,1)− y2(x, ρ̃n,1)

}
+O(εn). (80)

On the other hand, from (20), (21) and (72) we deduce

y2(x, ρ̃n,1) = e−(2n−σ )πix +O(n−1), y3(x, ρ̃n,1) = e(2n−σ )πix +O(n−1).

Taking into account these expressions and (80) we have the representation

ũn,1(x) =
√

2 sin (2n − σ )πx +O(εn). (81)

We seek for the eigenfunction ũn,2(x), corresponding to the eigenvalue λ = −ρ̃ 4
n,2 for sufficiently large n, in the form

ũn,2(x) = −(−1)σρ−2e−ρw4
√

2
4(α3,2 − α2,1 + α1,0)

∣∣∣∣∣∣∣∣∣

y1(x, ρ) y2(x, ρ) y3(x, ρ) y4(x, ρ)
U2(y1) U2(y2) U2(y3) U2(y4)
U1(y1) U1(y2) U1(y3) U1(y4)
U0(y1) U0(y2) U0(y3) U0(y4)

∣∣∣∣∣∣∣∣∣
ρ=ρ̃n,2

.

By a similar reasoning (see the above case for the eigenfunction ũn,1(x)), we get

ũn,2(x) =
√

2 cos (2n − σ )πx +O(εn). (82)

Thus, it is established (see the formulae (72) and (73)) that there exist two infinite sequences of simple eigenvalues

λ′n0
, λ′n0+1, λ′n0+2, . . . (83)

λ′′n0
, λ′′n0+1, λ′′n0+2, . . . (84)
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and the asymptotic formulae

λ′n = −ρ̃ 4
n,1 = ((2n − σ )π)4

{
1 + 2(−1)σα2,1 − c0

((2n − σ )π)2
+O(n−2εn)

}
, (85)

λ′′n = −ρ̃ 4
n,2 = ((2n − σ )π)4

{
1 + 2(−1)σ (α3,2 + α1,0)− c0

((2n − σ )π)2
+O(n−2εn)

}
(86)

are valid. Besides eigenvalues (83) and (84) there can exist only finitely many eigenvalues counted with multiplicities.

Assume that besides eigenvalues (83) and (84) the differential operator L has m eigenvalues counted with multiplicities.
Let m = m1 + m2, where m1 and m2 are arbitrary nonnegative integers. Add m1 (m2) numbers from the remaining m
eigenvalues to the sequence (83) (respectively (84)). We get two sequences of the form

c1, c2, . . . , cm1 , λ
′
n0
, λ′n0+1, λ′n0+2, . . . , e1, e2, . . . , em1 , λ

′′
n0
, λ′′n0+1, λ′′n0+2, . . .

Denote these sequences of eigenvalues by λ1,1, λ2,1, . . . , λn,1, . . . and λ1,2, λ2,2, . . . , λn,2, . . ., respectively. It is easy to see
that

λn+n1,1 = λ′n, λn+n2,2 = λ′′n, n ≥ n0, (87)

where n1 = m1 −n0 + 1 and n2 = m2 −n0 + 1. The formulae (7) are directly obtained from (85)–(87). In a parallel way,
repeating similar reasoning with appropriate sequences of root functions, the asymptotic formulae (8) are obtained from
(81) and (82).

4. Proofs of Theorem 1.2 and Corollary 1.3

Since p2(x) ∈ W 2
1 (0, 1), then according to (5) and (6) we have εn = O(n−1). Consequently, in this case, the asymptotic

formulae (8) can be rewritten as

un1+n,1(x) =
√

2 sin (2n − σ )πx +O(n−1), un2+n,2(x) =
√

2 cos (2n − σ )πx +O(n−1). (88)

Let
v1,1(x), v1,2(x), . . . , vn,1(x), vn,2(x), . . . (89)

be the system which is biorthogonally conjugate to the system

u1,1(x), u1,2(x), . . . , un,1(x), un,2(x), . . . , (90)

i.e. (un,j , vm,s) = δn,m.δj,s, n,m = 1, 2, . . . , j, s = 1, 2, where (·, ·) denotes the inner product in the space L2(0, 1) and δn,m
is the Kronecker symbol. It is well known, see [14, p. 84] or [27, p. 99], that (89) is the system of root functions of the
differential operator L∗, which is the adjoint operator to L. The differential operator L∗ is generated by the differential
expression

l∗(z) = zıv + (p2(x)z)′′ − (p1(x)z)′ + p0(x)z,

and the adjoint boundary conditions

U∗0 (z) ≡ z(1)− (−1)σz(0) = 0, U∗1 (z) ≡ z′(1)− (−1)σz′(0) + α3,2 z(0) = 0,
U∗2 (z) ≡ z′′(1)− (−1)σz′′(0) + α2,1 z′(0) + β2,0z(0) = 0,

U∗3 (z) ≡ z′′′(1)− (−1)σz′′′(0) + α1,0 z′′(0) + β3,1z′(0) + β3,0z(0) = 0,
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where β2,0, β3,1 and β3,0 are some numbers which depend only on the coefficients of the differential operator (2)–(3). Thus,
for j = 1, 2 and for sufficiently large numbers n, the following relations are valid: l∗(vn,j ) = λn,j vn,j , U∗s (vn,j ) = 0. From
the form of the differential operator L∗ and Theorem 1.1, it follows that for sufficiently large numbers n the equalities

vn1+n,1(x) = rn1+n,1(sin (2n − σ )πx +O(n−1)), vn2+n,2(x) = rn1+n,2(cos (2n − σ )πx +O(n−1)), (91)

hold, where rnj+n,j , j = 1, 2, are some numbers determined by the equality (unj+n,j , vnj+n,j ) = 1, j = 1, 2. From here and
the asymptotic formulae (88) and (91), for sufficiently large n, rnj+n,j =

√
2 + O(n−1), j = 1, 2. Consequently, from (91),

again for sufficiently large n,

vn1+n,1(x) =
√

2 sin (2n − σ )πx +O(n−1), vn2+n,2(x) =
√

2 cos (2n − σ )πx +O(n−1). (92)

Let

g0(x) = 1, g2n−1(x) =
√

2 sin 2nπx, g2n(x) =
√

2 cos 2nπx, n = 1, 2, . . . , (93)

g̃2n−1 =
√

2 sin(2n − 1)πx, g̃2n =
√

2 cos(2n − 1)πx, n = 1, 2, . . . (94)

Each of the systems (93) and (94) is an orthonormal basis of the space L2(0, 1). From the asymptotic formulae (88), (92),
it is obvious that each of the systems (89) and (90) satisfies the Bessel inequality. Namely, for an arbitrary function
f(x) ∈ L2(0, 1),

∞∑

n=1

2∑

j=1

|(f, un,j )|2 < ∞,
∞∑

n=1

2∑

j=1

|(f, vn,j )|2 < ∞.

Furthermore, each of the systems (89) and (90) is complete in the space L2(0, 1), see e.g. [28]. Consequently [9, Chapter VI,
§ 2.2, Theorem 2.1] each of these systems forms a Riesz basis of the space L2(0, 1).

Let us prove Corollary 1.3. Consider the case σ = 0. The case σ = 1 can be checked in the same way. Assume that
n1 ≥ 0 and n2 ≥ 0. From the asymptotic formulae (88), and the definition of {gk (x)}∞k=0, see (93), we obtain

∞∑

n=1

(
‖un1+n,1 − g2n−1‖2 + ‖un2+n,2 − g2n‖2

)
≤ const

∞∑

n=1

1
n2 < +∞. (95)

It is easy to see that n1 + n2 root functions of the operator L and one function from system (93) are absent in (95). Let
n1 + n2 > 1. In this case, by (95), the system S generated by all functions except n1 + n2 − 1 functions from the system
(90) is quadratically close to the system (93). Since (93) is an orthonormal basis of L2(0, 1), then S also forms a Riesz
basis of L2(0, 1) [9, Chapter VI, § 2.4, Theorem 2.3]. The latter contradicts the basicity of the system (90) in L2(0, 1).

Let n1 = n2 = 0. Since (90) is a Riesz basis of the space L2(0, 1), then again by (95), the system {gk (x)}∞k=1 is a basis
and this contradicts the basicity of the system {gk (x)}∞k=0 in L2(0, 1). All the remaining cases can be investigated in a
similar way.

Thus, it holds n1 + n2 = 1. Therefore, without loss of generality we can assume that n1 = 0 and n2 = 1. Consequently,
from (88) we have

un,1(x) =
√

2 sin (2n − σ )πx +O(n−1), un+1−σ,2(x) =
√

2 cos (2n − σ )πx +O(n−1). (96)

Similarly, the asymptotic formulae (92) will take the forms

vn,1(x) =
√

2 sin (2n − σ )πx +O(n−1), vn+1−σ,2(x) =
√

2 cos (2n − σ )πx +O(n−1). (97)

Next we prove that the system of root functions of the differential operator L forms a basis of the space Lp(0, 1), where
1 < p < ∞ and p 6= 2. As above, we consider only the case σ = 0. The case σ = 1 is similar.
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Note that (93) is a basis of the space Lp(0, 1) for any p ∈ (1,∞) [1, Chapter VIII, § 20, Theorem 2]. Consequently
[12, Chapter I, § 4, Theorem 6] there exists a constant Mp > 0 ensuring the inequality

∥∥∥∥∥

N∑

n=0

(f, gn)gn

∥∥∥∥∥
p

≤ Mp‖f‖p, N = 1, 2, . . . , (98)

for any function f(x) ∈ Lp(0, 1), where ‖ · ‖p means the norm in Lp(0, 1). We now fix p ∈ (1, 2). Since the system (90) is
complete in the space L2(0, 1), then this system is complete in Lp(0, 1) as well. Moreover, it is easy to see that

‖(f, vn,j )un,j‖p ≤ const‖f‖p,

where n = 1, 2, . . . and j = 1, 2. Consequently [12, Chapter VIII, § 4, Theorem 6], in order to prove the basicity of this
system in Lp(0, 1), it is enough to prove the existence of a constant M > 0 ensuring the inequality

∥∥∥∥∥

m∑

n=1

2∑

j=1

(f, vn,j )un,j

∥∥∥∥∥
p

≤ M‖f‖p, m = 1, 2, . . . ,

for f(x) ∈ Lp(0, 1). Note that instead of this inequality, under the same conditions, it is enough to prove the inequality

Jm(f) =

∥∥∥∥∥

m∑

n=1

{
(f, vn,1)un,1 + (f, vn+1,2)un+1,2

}
∥∥∥∥∥
p

≤ M ′‖f‖p, (99)

where m = 1, 2, . . . and M ′ is a certain positive constant. From (96)–(97) and (93) we have

un,1(x) = g2n−1(x) +O(n−1), un+1,2 = g2n(x) +O(n−1),
vn,1(x) = g2n−1(x) +O(n−1), vn+1,2(x) = g2n(x) +O(n−1).

Consequently,
Jm(f) ≤ Jm,1(f) + Jm,2(f) + Jm,3(f) + Jm,4(f), (100)

where m = 1, 2, . . . and

Jm,1(f) =

∥∥∥∥∥

2m∑

n=1

(f, gn)gn

∥∥∥∥∥
p

, Jm,2(f) =

∥∥∥∥∥

2m∑

n=1

(f, gn)O(n−1)

∥∥∥∥∥
p

,

Jm,3(f) =

∥∥∥∥∥

2m∑

n=1

(f, O(n−1))gn

∥∥∥∥∥
p

, Jm,4(f) =

∥∥∥∥∥

2m∑

n=1

(f, O(n−1))O(n−1)

∥∥∥∥∥
p

.

By (98),
Jm,1(f) ≤ const‖f‖p. (101)

From the Riesz theorem [33, Chapter XII, § 2, Theorem 2.8] it follows that

Jm,2(f) ≤ const
2m∑

n=1

|(f, gn)|n−1 ≤ const
( 2m∑

n=1

|(f, gn)|q
)1/q( 2m∑

n=1

n−p
)1/p

≤ const‖f‖p, (102)

where 1/p+ 1/q = 1. Further,

Jm,3(f) ≤

∥∥∥∥∥

2m∑

n=1

(f, O(n−1))gn

∥∥∥∥∥
2

=
( 2m∑

n=1

|(f, O(n−1))|2
)1/2

≤ const‖f‖1

( 2m∑

n=1

n−2

)1/2

≤ const‖f‖p. (103)
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Moreover,

Jm,4 ≤ const‖f‖1
2m∑

n=1

n−2 ≤ const‖f‖p. (104)

The inequality (99) is a consequence of the inequalities (100)–(104). Thus, the basicity of the system (90) in the space
Lp(0, 1) for 1 < p < 2 is proved.

Let 2 < p < ∞ and 1/p + 1/q = 1. Note that 1 < q < 2 and (89) is the system of root functions of the differential
operator L∗. As it has been proved above, the system of root functions of such operator forms a basis of the space
Lr(0, 1) for any r ∈ (1, 2), in particular r = q. Thus, (89) is a basis of Lq(0, 1). Consequently, the system (90) which is
biorthogonally conjugate to (89) forms a basis of Lp(0, 1).
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