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1 Introduction

The concept of Morrey space was introduced by Morrey in 1938. Since then,
various problems related to this space have been intensively studied. Playing
an important role in the qualitative theory of elliptic differential equations
(see, for example, [5,13]), this space also provides a large class of examples
of mild solutions to the Navier–Stokes system [12]. In the context of fluid
dynamics, Morrey spaces have been used to model flow when vorticity is a
singular measure supported on certain sets in Rn [7]. There are sufficiently
wide investigations related to fundamental problems in these spaces in view
of differential equations, potential theory, maximal and singular operator
theory, approximation theory and others (see, for example, [6] and the ref-
erences above). More details about Morrey spaces can be found in [15,17].

In recent years there has been a growing interest in the study of vari-
ous subjects related to Morrey-type spaces. For example, some problems
in harmonic analysis and approximation theory have been treated in [8–11,
16].

The basis properties of trigonometric systems in classical spaces are well
studied. Study of the problems of the approximation theory in spaces such
as Morrey has recently started and it remains much to learn. Basicity of
exponential systems in Morrey-type spaces is studied in [3,4]. In this paper
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we study the problem of basicity of exponential system in Sobolev-Morrey
spaces. In the future, our goal is to follow the scheme of works [1,2,14].

2 Morrey-Lebesgue space

Let us give a definition for above-mentioned spaces. Let Γ be some rectifi-
able Jordan curve on the complex plane C. By |M |Γ we denote the linear
Lebesgue measure of the set M ⊂ Γ .

By the Morrey-Lebesgue space Lp,α (Γ ), 0 ≤ α ≤ 1, p ≥ 1, we mean a
normed space of all functions f (ξ) measurable on Γ equipped with a finite
norm ‖ · ‖Lp,α(Γ ):

‖f‖Lp,α(Γ ) =

(
sup
B

∣∣∣B
⋂
Γ
∣∣∣
α−1 ∫

B
⋂
Γ
|f (ξ)|p |dξ|

)1/p

< +∞,

where the sup is taken over all disks B centered on Γ . Lp,α (Γ ) is a Banach
space and Lp,1 (Γ ) = Lp (Γ ), Lp,0 (Γ ) = L∞ (Γ ).

The embedding Lp,α1 (Γ ) ⊂ Lp,α2 (Γ ) is valid for 0 ≤ α1 ≤ α2 ≤ 1. Thus,
Lp,α (Γ ) ⊂ Lp (Γ ), ∀α ∈ [0, 1], ∀p ≥ 1. The case of Γ = [−π, π] will be
denoted by Lp,α.

Denote by L̃p,α the linear subspace of Lp,α consisting of functions whose
shifts are continuous in Lp,α, i.e.

L̃p,α = {f ∈ Lp,α : ‖f (+δ)− f (·)‖ → 0, δ → 0} .

The closure of L̃p,α in Lp,α will be denoted by MLp,α, i.e. MLp,α = L̃p,α.

3 Morrey-Sobolev space

Let 0 ≤ α ≤ 1, p ≥ 1. By W 1
p,α we denote the space of functions which

belong, together with their derivatives of first order, to the space Lp,α (Γ )
equipped with the norm

‖f‖W 1
p,α

= ‖f‖Lp,α +
∥∥f ′
∥∥
Lp,α

. (3.1)

Denote by W̃ 1
p,α the linear subspace of W 1

p,α consisting of functions whose
first order derivatives are continuous with respect to the shift operator. By
MW 1

p,α we denote the closure of this space with respect to the norm (3.1).
By Lp,α we denote the direct sum of MLp,a and C (C is the complex

plane)
Lp,α = MLp,α ⊕ C.

Let us define the norm in Lp,α in the following way:

‖û‖Lp,α
= ‖u‖Lp,α + |λ| ,∀û = (u;λ) ∈ Lp,α.
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The following lemma is true.
Lemma 1. The operator (Aû) (t) = λ +

∫ t
−π u (τ) dτ is an isomorphism

from Lp,α onto MW 1
p,α.

Proof. At first, let us show that v (t) = (Aû) t ∈ W 1
p,α. Indeed, since

Lp,α ⊂ Lp ⊂ L1, then

‖v (t)‖Lp,α =

∥∥∥∥λ+

∫ t

−π
u (τ) dτ

∥∥∥∥
Lp,α
≤ ‖λ‖Lp,α +

∥∥∥∥
∫ t

−π
u (τ) dτ

∥∥∥∥
Lp,α
≤

≤ (2π)
α

p |λ|+ sup
I⊂(−π,π)

{
1

|I|1−α
∫

I

∣∣∣∣
∫ t

−π
u (τ) dτ

∣∣∣∣
p

dt

}1/p

≤

≤ (2π)
α
p |λ|+ sup

I⊂(−π,π)

{
1

|I|1−α
∫

I

(∫ π

−π
|u (τ)| dτ

)p
dt

}1/p

=

= (2π)
α

p |λ|+ (2π)
α

p ‖u‖L1(−π,π) < +∞. (3.2)

Also, since v′ (t) = u (t) ∈ Lp,α, we have v (t) ∈W 1
p,α.

Now we show that v (t) ∈MW 1
p,α. From u ∈MLp,α it follows

‖v (·+ δ)− v (·)‖W 1
p,α

= ‖v (·+ δ)− v (·)‖Lp,α +
∥∥∥v′

(·+ δ)− v′
(·)
∥∥∥
Lp,α

=

=

∥∥∥∥
∫ ·+δ

·
u (τ) dτ

∥∥∥∥
Lp,α

+ ‖u (·+ δ)− u (·)‖Lp,α → 0, δ → 0.

Let us show that A is a bounded operator. We have

‖A (û)‖W 1
p,α

=

∥∥∥∥λ+

∫ t

−π
u (τ) dτ

∥∥∥∥
Lp,α

+ ‖u (τ)‖Lp,α .

Taking into account (3.2)

‖A (û)‖W 1
p,α
≤ (2π)

α
p |λ|+ (2π)

α
p ‖u‖L1(−π,π) + ‖u‖Lp,α .

As the following relation holds

‖u‖L1
≤ C1 ‖u‖Lp ≤ C2 ‖u‖Lp,α ,

we have the validity of the following inequality

‖A (û)‖W 1
p,α
≤M (|λ|+ ‖u‖Lp,α ) = M ‖û‖Lp,α

,M = const.

Let us show that kerA = {0}. Let Aû = 0, i.e. λ+
∫ t
−π u (τ) dτ = 0. If we

differentiate both sides, we get u (t) = 0, a.e. . Thus λ = 0. We have û = 0.
For ∀v ∈ MW 1

p,α taking v̂ = (v′; v (−π)) we have v̂ ∈ Lp,α and A (v̂) = v.

It means that RA = MW 1
p,α, where RA is a range of the operator A . It
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follows from Banach’s theorem on the inverse operator that the inverse of
A is a continuous operator. The lemma is proved.

The following theorem is true.
Theorem 1. System t

⋃{
eint
}
n∈Z forms a basis for MW 1

p,α (−π, π) .

Proof. It is known that system
{
eint
}
n∈Z is a basis in space MLp,α [3].

Let us prove that the system {û−1}
⋃ {u0}

⋃ {û±n },n ≥ 1 forms a basis for
Lp,α, where

û−1 =

(
1
−π
)
, û0 =

(
0
1

)
, û+n =

(
ineint

e−iπn

)
, û−n =

(
−ine−int
eiπn

)
, n ≥ 1.

Let us show that for ∀û ∈ Lp,α there exists the decomposition

û = c−1û−1 + c0û0 +
∞∑

n=1

c+n û
+
n +

∞∑

n=1

c−n û
−
n , (3.3)

and this decomposition is unique. This decomposition is equivalent to the
next two decompositions

u (t) = c−1 +
∞∑

n=1

c+n (in) eint +
∞∑

n=1

c−n (−in) e−int, (3.4)

λ = −πc−1 + c0 +
∞∑

n=1

c+n e
−inπ +

∞∑

n=1

c−n e
inπ. (3.5)

Following [3] we obtain that there exists the decomposition (3.4) and it is
unique. Let us note that the decomposition (3.4) belongs to the space MLp,α

and since Lp,α ⊂ Lp, then Hausdorff-Young inequality holds for the system{
eint
}
n∈Z in Morrey space Lp,α. I.e., if 1 < p ≤ 2 then

(
|c1|q +

∞∑

n=1

∣∣c−nn
∣∣q +

∞∑

n=1

∣∣c+n n
∣∣q
)1/q

≤M ‖u‖Lp ,

where 1
p + 1

q = 1.

Applying Hölder’s inequality, we obtain

|c−1|+
∞∑

n=1

∣∣c−n
∣∣+

∞∑

n=1

∣∣c+n
∣∣ = |c−1|+

∞∑

n=1

1

n

∣∣nc−n
∣∣+

∞∑

n=1

1

n

∣∣nc+n
∣∣ ≤ |c−1|+

+
∞∑

n=1

(
1

n

)p ∞∑

n=1

∣∣nc−n
∣∣q +

∞∑

n=1

(
1

n

)p ∞∑

n=1

∣∣nc+n
∣∣q < +∞.
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In the case of p > 2 if Lp,α ⊂ Lp ⊂ L2 then

(
|c−1|2 +

∞∑

n=1

∣∣c−nn
∣∣2 +

∞∑

n=1

∣∣c+n n
∣∣2
)1/2

≤M ‖u‖L2

and similarly

|c−1|+
∞∑

n=1

∣∣c−n
∣∣+
∞∑

n=1

∣∣c+n
∣∣ ≤ |c0|+

∞∑

n=1

(
1

n

)2
( ∞∑

n=1

∣∣nc−n
∣∣2+

∞∑

n=1

∣∣nc+n
∣∣2
)
<+∞.

So, we show that the series
∑∞

n=1 |c±n | is absolutely convergent. Therefore
in the decomposition (3.5) the coefficient c0 is uniquely defined. Thus, we
have shown the existence and uniqueness of the decomposition (3.3) for
∀û ∈ Lp,α. I.e. a system {û−1}

⋃ {û0}
⋃ {û±n }n≥1 forms a basis for Lp,α. We

can easily calculate that for the operator

Aû = λ+

∫ t

−π
u (τ) dτ,

the following relations are true

A (û−1) = t, A (û0) = 1

A
(
û−n
)

= e−int, A
(
û+n
)

= eint.

If A is an isomorphism, then a system t
⋃{

eint
}
n∈Z forms a basis for

MW 1
p,α. The theorem is proved.
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