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SOME PROPERTIES OF DEFECT BASES AND
BASES OF SUBSPACES

Abstract

In the paper we study some properties of defect bases in Banach spaces and
some closeness theorems for basicity of systems of subspaces of Banach spaces
is proved.

1. In this section we’ll give some necessary definitions and some related necessary
facts. With the help of these facts we’ll give also simpler proofs of some statements
obtained in the papers [1,2].

Let F be a Frechet space, ψ =
{
ψj

}∞
1

be a system of vectors of this space. This
system is said to be a defect basis, if we can eliminate a finite number of vectors
from this system so that the remaining system will be a basis of its own linear closed
span.

Since in each Banach space there may be found infinite dimensional subspace
possessing a basis, (see [3], p.206), then obviously, defect bases exist in arbitrary
Banach space.

In sequel, we’ll use the following notations:
R (M) is a subspace generated by the system M ;
α (ψ) is a minimal number of vectors, in eliminating of which ψ turns into a basis

of own linear close span;
β (ψ) = codimR (ψ) (finite or infinite);
χ (ψ) = β (ψ)− α (ψ) is an index of a defect basis ψ.
Obviously, the condition α (ψ) = β (ψ) = 0 is a necessary and sufficient condition

for the defect basis ψ to be a basis of the Frechet space F .
Remind that the system {xn}∞1 of the Frechet space F is said to be minimal, if

∀i ∈ N : xi /∈ R ({xn}∞1 , n 6= i). The following lemma shows that we can a little
”weaken” the last condition.

Conjecture 1. For the minimality of the system {xn}∞1 of the Frechet space F
it is necessary and sufficient to fulfill the condition:

∀i ∈ N : xi /∈ R
(
{xn}n>i

)
. (1)

Proof. Necessity of condition (1) is obvious. Therefore, we prove its sufficiency.
Assume the contrary:

∃i0 ∈ N : xi0 ∈ R ({xn}∞1 , n 6= i0) .

It is known that the sum of two subspaces of a linear topological space one of
which is finite dimensional is a subspace (see [4], Theorem 1, p.29). Therefore, we
can write the following relation:

R ({xn}∞1 , n 6= i0) = R
(
{xn}i0−1

1

)
+R

(
{xn}∞i0+1

)
.
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Then we can represent xi0 in the form

xi0 = α1x1 + ...+ αi0−1xi0−1 + y,

where α1, ..., αi0−1are some numbers, y ∈ R
(
{xn}∞i0+1

)
. Choose such a natural num-

ber k0 ∈ {1, 2, ..., i0 − 1} that,

αk0 6= 0 and αi = 0 for i < k0.

Then, it is clear that xk0 ∈ R
(
{xn}n>k0

)
. And this contradicts the condition

(1) of the conjecture.
The conjecture is proved.
Notice that in the case of Banach spaces, this conjecture was proved by another

method in [1].
Definition [5]. Let E1 and E2 be Banach spaces and A ∈ L (E1, E2) . If the

operator A is normal solvable ( ImA is closed) and KerA is finite dimensional, then
the operator A is said to be Φ+operator.

Further we denote

α (A) = dimKerA, β (A) = codim ImA.

Notice that if we determine the Φ+ operator when the spaces E1 and E2 are the
Frechet spaces, the statement of Lemma 3 from [6] remains valid for the Frechet
spaces.

Lemma. Let ψ =
{
ψj

}∞
1

be an arbitrary basis of the Frechet space F1, A :
F1 → F2 be an arbitrary Φ+ operator. Then the system Aψ =

{
Aψj

}∞
1

forms a
defect basis in the Frechet space F2 and

α (Aψ) = α (A) , β (Aψ) = β (A) .

The proof word for word coincides with the proof of lemma 3 from [6]. Only, in
this case we take into account that a Banach theorem on inverse mapping remains
valid also for the Frechet space as well (see [7]).

With the help of this lemma we’ll give a simple proof of the next conjecture that
in the case of Banach spaces was proved by another method in [2].

Conjecture 2. Let F1 and F2 be some Frechet spaces, {ei}∞1 be an arbitrary
basis of F1, T ∈ L (F1, F2) be some Fredholm operator. Then the system {ϕi}

∞
1 =

{Tei}∞1 either is a basis of the space F2, or it is neither complete nor minimal.
Proof. Since each Fredholm operator is Φ+ operator, then by the lemma the

system {ϕi}
∞
1 forms a defect basis in F2 and the relations α (ϕ) = α (T ) and β (ϕ) =

β (T ) are fulfilled. Since for the Fredholm operators α (T ) = β (T ) and if {ϕi}
∞
1

is complete (minimal), then β (ϕ) = 0 ((α (ϕ) = 0)), hence it follows a chain of
equalities

0 = α (ϕ) = α (T ) = β (T ) = β (ϕ) .

And this means that the system {ϕi}
∞
1 is a basis of the space F2

Applying the lemma we prove the next conjecture that in the case of Banach
spaces was proved by another method in [8].
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Conjecture 3. Let F be some Frechet space, E be some space of finite dimension

m and let the system zn =
(
xn

en

)
∈ F ⊕ E, n = 1, 2, ... forms a basis in the

space F ⊕ E. Then the system {xn}∞1 forms a defect basis in the space F and
α ({xn}∞1 ) = m.

Proof. First of all we notice that the space F⊕E is also a Frechet space where
the metrics is determined as a sum of appropriate metrics. Define a linear bounded
operator A : F⊕E → F by the formula(

x
f

)
∈ F⊕E : A

(
x
f

)
= x.

It follows from the definition of the operator A that ImA = F =F = ImA,

KerA =
{(

0
f

)
, f ∈ E

}
, so dimKerA = m < ∞. Thus, the operator A is a

Φ+ operator with α (A) = m, β (A) = 0. Then by the previous lemma the system

xn = A

(
xn

en

)
, n = 1, 2, ... forms a defect basis in the space F and α ({xn}∞1 ) = m,

β ({xn}∞1 ) = 0.
2. The sequence {Bk}∞1 of non-zero subspaces Bk ⊂ B is said to be a basis (of

subspaces) of a Banach space B, if any vector x ∈ B is expanded in a unique way
in a series of the form

x =
∞∑

k=1

xk , (2)

where xk ∈ Bk (k = 1, 2, ...) .
Let {Bk}∞1 be some basis of subspaces, Pk be a projector, associating to the

vector x its component xk from exponsion (2). Then {Pk}∞1 forms mutually disjunct
system of continuous projectors, moreover

sup
n

∥∥∥∥∥
n∑

k=1

Pk

∥∥∥∥∥ <∞.

The sequence {Bk}∞1 of non-zero subspaces Bk ⊂ B will be said to be ω-linear-
independent, if from

∞∑
k=1

xk = 0 (xk ∈ Bk , k = 1, 2, ...)

it follows xk = 0, k = 1, 2, ...
Lemma 1. Let X and Y be some Banach spaces, the system of subspaces

{Xn}∞1 form a basis in the space X. If the linear operator T ∈ L (X,Y ) is contin-
uously invertible, then the system {TXn}∞1 forms a basis in the space Y.

In other words, any invertible bounded operator transforms any basis into a
basis. Therewith, these bases are said to be equivalent.

We give the following simple lemma without proof.
Lemma 2. Let F ∈ L (B) be a Fredholm operator, {Bk}∞1 be some system of

subspaces of the space B. If the system {FBn}∞1 forms a complete system in the
space B, then the system {Bn}∞1 also forms a complete system in this space.
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In the given paper we prove some closeness theorems for basicity of systems
of subspaces of Banach spaces. Therewith the closeness is given in the terms of
so-called Neumann- Schatten symmetric normalizing functions. (see e.g. [11]).

Note that the closeness theorems for a system of subspaces in the case of Hilbert
spaces were studied in [12]. Analogy of N. K. Bari theorem on closeness in the
theory of vector bases for the case of subspaces is obtained there. The results that
we have obtained are analogy of these theorems, and also are generalization and
amplification of the results of the paper [13].

We’ll need some information on symmetric normalizing functions for formulating
and proving main theorems, for the first time for finite dimensional case considered
by J. Neumann [9]. Theory of symmetric normalizing functions was developed in
joint investigations of J. Neumann [9] and R. Schatten [10] (see also [11]).

By K we denote a linear space of all finite sequences ξ =
{
ξj

}∞
1

of complex
numbers (with coordinate-wise addition and multiplication by number).

A real-valued function Φ (ξ) determined on K is said to be a symmetric normal-
izing function, if it possesses the following properties:

a) Φ (ξ) > 0 (ξ ∈ K, ξ 6= 0) ;
b) for any complex λ

Φ (λξ) = |λ|Φ (ξ) (ξ ∈ K) ;

c) Φ (ξ1 + ξ2) ≤ Φ (ξ1) + Φ (ξ2) (ξ1 , ξ2 ∈ K) ;
d) if ξ =

{
ξj

}∞
1

and ξ′ =
{
εjξnj

}∞
1

, where nj (j = 1, 2, ...) is arbitrary permu-
tation of numbers 1, 2, ..., and |εj | = 1, then

Φ (ξ) = Φ
(
ξ′

)
;

f) Φ (1, 0, 0, ...) = 1.
It is easy to see that for any symmetric normalizing function Φ (ξ)

max
j

∣∣ξj

∣∣ ≤ Φ (ξ) ≤
∑

j

∣∣ξj

∣∣ (
ξ =

{
ξj

}
∈ K

)
(3)

To each symmetric normalizing function Φ (ξ) we assosiate (see[9], [10]) two,
generally speaking, different Banach spaces lΦ and l

(0)
Φ . The space lΦ consists of all

sequences of complex numbers ξ =
{
ξj

}∞
1

, for which

sup
n

Φ
(
ξ(n)

)
<∞,

where ξ(n) = {ξ1, ξ2, ..., ξn, 0, 0...} (n = 1, 2, ...) ; the norm in lΦ is determined by
the equality

‖ξ‖Φ = lim
n→∞

Φ
(
ξ(n)

)
.

The space l(0)
Φ is a subspace of lΦ coinciding with closure K in the space lΦ. The

vectors ξ =
{
ξj

}∞
1

from l
(0)
Φ are characterized by the fact that for them

lim
n→∞

∥∥∥ξ − ξ(n)
∥∥∥

Φ
= lim

n→∞
Φ

(
ξ − ξ(n)

)
= 0.
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In [10] it is shown that conjugate symmetric normalizing function Φ∗ (ξ) defined
by the equality

Φ∗ (ξ)
def
= max

η 6=0, η∈K

∣∣∣∣∣∣
∑

j

ηjξj

∣∣∣∣∣∣
Φ (η)

, (ξ ∈ K)

responds to any symmetric normalizing function Φ (ξ).
We can verify the following properties:

Φ∗∗ (ξ) = Φ (ξ) , (ξ ∈ K)∑
j

∣∣ξj

∣∣ ∣∣ηj

∣∣ ≤ ‖ξ‖Φ · ‖η‖Φ∗ (ξ ∈ lΦ, η ∈ lΦ∗) .

Let B be some Banach space and Φ be an arbitrary fixed symmetric normalizing
function. The following lemma is true.

Lemma 3. Let the system of finite dimensional subspaces {Bn}∞1 form a basis
in the space B, moreover

∀x ∈ B : {‖PBnx‖}
∞
1 ∈ lΦ, (4)

and for the system of finite dimensional subspaces {An}∞1 the condition

{‖PAn − PBn‖}
∞
1 ∈ l(0)Φ∗ , (5)

be satisfied, where PBn : B → Bn, n = 1, 2, ... are natural projector generated by the
basis {Bn}∞1 and PAn , n = 1, 2, ... are some projectors on An.

Then the operator

F : B → B, x 7→
∞∑

n=1

PAnPBnx (6)

determines a Fredholm operator.
Remark. By means of Banach-Steinhauss theorem we can prove that condition

(4) is equivalent to the condition

∃K > 0, ∀x ∈ B : ‖{‖PBnx‖}
∞
1 ‖Φ ≤ K · ‖x‖ .

Proof. At first we prove that series (6) converges for any x ∈ B. Really,∥∥∥∥∥
m∑
n

PAk
PBk

x

∥∥∥∥∥ ≤
∥∥∥∥∥

m∑
n

(PAk
PBk

− PBk
)x

∥∥∥∥∥ +

∥∥∥∥∥
m∑
n

PBk
x

∥∥∥∥∥ =

=

∥∥∥∥∥
m∑
n

(PAk
− PBk

)PBk
x

∥∥∥∥∥ +

∥∥∥∥∥
m∑
n

PBk
x

∥∥∥∥∥ ≤
m∑
n

‖PAk
− PBk

‖ · ‖PBk
x‖+

+

∥∥∥∥∥
m∑
n

PBk
x

∥∥∥∥∥ ≤
∞∑
n

‖PAk
− PBk

‖ · ‖PBk
x‖+

∥∥∥∥∥
m∑
n

PBk
x

∥∥∥∥∥ ≤
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≤
∥∥{‖PAk

− PBk
‖}∞n

∥∥
Φ∗ ·

∥∥{‖PBk
x‖}∞n

∥∥
Φ

+

∥∥∥∥∥
m∑
n

PBk
x

∥∥∥∥∥ . (7)

According to condition (5) of the lemma

lim
n→∞

∥∥{‖PAk
− PBk

‖}∞n
∥∥

Φ∗ = 0 (8)

(in this equality characteristic property of the elements ξ ∈ l(0)
Φ∗ has been taken into

account) and by condition (4) of the lemma

∀n ∈ N :
∥∥{‖PBk

x‖}∞n
∥∥ < M

(here the number M , generally speaking, depends on x) and since the system {Bk}∞1
is a basis, then

lim
n,m→∞

∥∥∥∥∥
m∑
n

PBk
x

∥∥∥∥∥ = 0.

Taking this into account, from (7) we get

∀x ∈ B : lim
n,m→∞

∥∥∥∥∥
m∑
n

PAk
PBk

x

∥∥∥∥∥ = 0.

By this we prove convergence of series (6) for any x ∈ B.
For the operator F the following representation is true:

Fx = (I + T )x, where Tx =
m∑

n=1

(PAn − PBn)PBnx.

Prove that the operator T is compact. Define the operators Tm, m = 1, 2, ... in
the following way:

Tmx =
m∑

n=1

(PAn − PBn)PBnx.

Since dimBn < ∞, n = 1, 2, ... , obviously the operators Tm, m = 1, 2, ... are
bounded and finite dimensional. We can write the following one:

‖(T − Tm)x‖ =

∥∥∥∥∥
∞∑

m+1

(PAn − PBn)PBnx

∥∥∥∥∥ ≤
∞∑

m+1

‖PAn − PBn‖ · ‖PBnx‖ ≤

≤
∥∥{‖PAn − PBn‖}

∞
m+1

∥∥
Φ∗ ·

∥∥{‖PBnx‖}
∞
m+1

∥∥
Φ
≤ K ·

∥∥{‖PAn − PBn‖}
∞
m+1

∥∥
Φ∗ · ‖x‖ ,

where K > 0 is some constant independent of x (see remark).
Taking into account (8) we get

lim
m→∞

‖T − Tm‖ = 0.

Thus, the operator T is compact. Fredholm property of the operator F follows
from representation F = I + T. The lemma is proved.

Now, using this lemma we prove the following theorem.
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Theorem 1. Assume that the conditions of Lemma 3 are satisfied. If the system
{PAnBn}∞1 is complete and ω-linear independent in the Banach space B, then the
system {An}∞1 forms a basis equivalent with the system {Bn}∞1 in the space B.

Proof. Let’s consider an operator F, defined by the equality (6) . According to
Lemma 2 operator F is Fredholm. Since

F (Bn) = PAn (Bn) ⊂ An

and by the condition of the theorem the system {PAnBn}∞1 complete in the space B,
the operator F is boundedly invertible. Hence, according to Lemma 1 the basicity
of the system {FBn}∞1 follows. Taking into account ω-linear independence of the
system {An}∞1 , we get basicity of this system. The theorem is proved.

We can prove the following theorem in a similar way.
Theorem 2. Let the system finite dimensional subspaces {Bn}∞1 form a basis

in the space B, moreover

∀x ∈ B : {‖PBnx‖}
∞
1 ∈ lΦ

and let the system of finite dimensional subspaces {An}∞1 satisfy the condition

{‖PAn − I‖}∞1 ∈ l(0)Φ∗ .

If the system {PAnBn}∞1 is complete and ω -linear independent in B, then the
system {An}∞1 forms a basis equivalent with the system {Bn}∞1 in the space B.

Theorem 3. Assume that the conditions of Lemma 3 are satisfied. If the system
{PAnBn}∞1 is complete and dimAn = dimBn, n = 1, 2, ..., then the system {An}∞1
forms a basis equivalent with the system {Bn}∞1 in the space B.
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