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Abstract 
 
With the ongoing global pandemic of COVID-19, a question is whether the coming summer in the northern 

hemisphere will reduce the transmission intensity of COVID-19 with increased humidity and temperature. 

In this paper, we investigate this problem using the data from the cases with symptom-onset dates from 

January 19 to February 10, 2020 for 100 Chinese cities, and cases with confirmed dates from March 15 to 

April 25 for 1,005 U.S. counties. Statistical analysis is performed to assess the relationship between the 

transmissibility of COVID-19 and the temperature/humidity, by controlling for various demographic, socio-

economic, geographic, healthcare and policy factors and correcting for cross-sectional correlation. We find a 

similar influence of the temperature and relative humidity on effective reproductive number (R values) of 

COVID-19 for both China and the U.S. before lockdown in both countries: one-degree Celsius increase in 

temperature reduces R value by about 0.023 (0.026 (95% CI [-0.0395,-0.0125]) in China and 0.020 (95% CI 

[-0.0311, -0.0096]) in the U.S.), and one percent relative humidity rise reduces R value by 0.0078 (0.0076 

(95% CI [-0.0108,-0.0045]) in China and 0.0080 (95% CI [-0.0150,-0.0010]) in the U.S.). If assuming a 30 

degree and 25 percent increase in temperature and relative humidity from winter to summer in the northern 

hemisphere, we expect the R values to decline about 0.89 (0.69 by temperature and 0.20 by humidity). 

Moreover, after the lockdowns in China and the U.S., temperature and relative humidity still play an 

important role in reducing the R values but to a less extent. Given the notion that the non-intervened R values 

are around 2.5 to 3, only weather factors cannot make the R values below their critical condition of R<1, 

under which the epidemic diminishes gradually. Therefore, public health intervention such as social 

distancing is crucial to block the transmission of COVID-19 even in summer. 
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Introduction 
The novel coronavirus 2019 (COVID-19) disease has become a global pandemic with more than 4.7 

million confirmed cases worldwide until May 18, 2020 1 since its first reported case in Wuhan, China in 

December 2019 2. Compared with the epidemic of the severe acute respiratory syndrome (SARS) in 2003 3, 

the geographic range of the COVID-19 outbreak is much wider. The transmission of coronavirus can be 

affected by a number of factors, including climate conditions (such as temperature and humidity), population 

density, medical care quality etc.4,5.  Previous studies have shown that wintertime climate and host behavior 

can facilitate the transmission of influenza 6–8 and other human coronaviruses 9,10. Recently there have also 

been studies analyzing the effectiveness of government policies (e.g., city lockdown) to the transmission of 

the disease 11,12. With the arrival of summer in the northern hemisphere, people are wondering whether hot 

and humid weather can slow down the COVID-19 pandemic 13,14. Existing studies find that temperature and 

humidity have a significant influence on the number of confirmed cases for a certain location15. On the other 

hand, indirect evidence shows the transmission of COVID-19 in the local community among tropical areas, 

which indicates that the impact of meteorological conditions on COVID-19 may not be as big as those on flu 

and colds.16 Therefore, the accurate measurement of the influence of weather conditions on the 

transmissibility of COVID-19 is important for the knowledge of the general public. However, until now, there 

is no direct evidence demonstrating the influence of temperature and humidity on the transmissibility directly 

measured by the effective reproductive number (R value) of COVID-19.  

Furthermore, during a pandemic, getting timely and accurate research insights is essential for taking 

effective countermeasures and reducing economic losses. However, the duration of the COVID-19 pandemic 

is not yet sufficient to support a thorough study of the impact of meteorological factors on the transmission 

of the SARS-CoV-2 virus at any fixed location. Since the transmission of other human coronaviruses that 

cause mild respiratory symptoms is seasonal, recently the seasonality of these viruses has been borrowed to 

conduct a long-term simulation of the transmission of COVID-19 17.  

The goal of this paper is to quantify the influences of temperature and humidity on the transmissibility 

of COVID-19 measured by R values, through analyzing COVID-19 data from both China and the U.S. with 

rigorous statistical analysis. Specifically, we adapt the strategy of “trading space for time”, that is, in a 

relatively short time range, linking the transmission intensity in different locations to their associated 

meteorological conditions. Our analysis shows that this strategy allows us to recognize the meteorological 

trend of the pandemic even in its early stage. 

Results 

COVID-19 has spread widely in both China and the U.S. The transmissibility and weather conditions 

in the major cities of these two countries vary largely (Figures 1 and 2). We analyze the relationship between 

the COVID-19 transmissibility and the weather factors, controlling for various demographic, socio-economic, 

geographic, healthcare and policy factors, and correcting for cross-sectional correlation. Overall, we find 

robust negative associations between temperature as well as humidity and COVID-19 transmission before 

the large-scale public-health interventions in China and the U.S. Moreover, the temperature has a consistent 

influence on the effective reproductive number, R values, for both Chinese cities and U.S. counties; relative 

humidity also has consistent effects across the two countries. Both of them remain to have a negative 

influence even after the public-health intervention (lockdown), but with smaller magnitudes since more and 

more people stay at home and hence expose less to the outdoor weather.  More details are presented below. 

Temperature, Relative Humidity, and Effective Reproductive Numbers.  For either China and the 

U.S., we conduct a series of cross-sectional regressions (Fama-Macbeth approach 18) of the daily effective 

reproductive numbers (R values), which measure the transmissibility of COVID-19, on the six-day average 

temperature and relative humidity up to and including the day when the R value is measured 19 and other 

control factors, for the before lockdown period, the after lockdown period, and the overall period. Figure 1 

shows the average R values from January 19 to 23 (before the public health intervention) for different Chinese 

cities geographically, and Figure 2 shows the average R values from March 15 to April 6 (before the majority 

of states declared a stay-at-home order) for different U.S. counties. 
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Before the lockdown, the results for Chinese cities (Table 1) demonstrate that the six-day average 

temperature and relative humidity have a strong influence on R values, with p values smaller than or around 

0.01 for all three time period specifications. One-degree Celsius increase in temperature and one percent 

increase in relative humidity reduce the R value by 0.026 (95% CI [-0.0395, -0.0125]) and 0.0076 (95% CI 

[-0.0108, -0.0045]), respectively. Analysis for U S. counties (Table 2) shows that six-day average 

temperature and relative humidity have statistically significant associations on R values with p values lower 

than 0.05 before April 7, the time when most states declared state-wise stay-at-home orders 20. One-degree 

Celsius increase in temperature and one percent increase in relative humidity reduce the R value by 0.020 

(95% CI [-0.0311, -0.0096]) and 0.0080 (95% CI [-0.0150, -0.0010]) respectively.  

Overall, the influence of the temperature and relative humidity on R values are quite similar before 

lockdown in China and the U.S.: one-degree Celsius increase in temperature reduces R value by about 0.023 

(0.026 (95% CI [-0.0395,-0.0125]) in China and 0.020 (95% CI [-0.0311, -0.0096]) in the U.S.), and one 

percent relative humidity rise reduces R value by about 0.0078 (0.0076 (95% CI [-0.0108,-0.0045]) in China 

and 0.0080 (95% CI [-0.0150,-0.0010]) in the U.S. 

After lockdown, the temperature and relative humidity also present negative relationships with R values 

for both countries. For China, it's statistically significant (with p values lower than 0.05), and one-degree 

Celsius increase in temperature and one percent increase in relative humidity reduce R values by 0.0209 (95% 

CI [-0.0378, -0.0041]) and 0.0054 (95% CI [-0.0104, -0.0004]), respectively. For the U.S. the estimated 

effects of the temperature and relative humidity on R values are still negative but no longer statistically 

significant (with p values 0.141 and 0.073, respectively). The less influence from weather conditions is very 

likely caused by the stay-at-home policy during the lockdown periods, and hence people expose less to the 

outdoor weather.  Therefore, we rely more on the estimates of the weather-transmissibility relationship before 

the lockdowns in both countries. 

Control Variables.  Several control variables also have significant influences on the transmissibility of 

COVID-19.  In China, before the lockdowns, in cities with higher levels of population density, the virus 

spreads faster than that in less crowded cities due to more possible contacts among people. One thousand 

people per square kilometer rise in population density is associated with a 0.1188 (95% CI [0.0573, 0.1803]) 

increase in the R value before lockdown. Cities in China with more doctors have a smaller transmission 

intensity, since the infected are treated in hospitals and hence unable to transmit to others. Particularly, one 

thousand more doctors are associated with a 0.0058 [-0.0090, -0.0025] decrease in the R value during the 

overall time period; the influence of doctor number is greater before lockdown with a coefficient of 0.0109 

(95% CI [-0.0163, -0.0056])). Similarly, more developed cities (with higher GDP per capita) normally have 

better medical conditions, hence, patients are more likely to be taken care and thus unlikely transmitting to 

others. Ten thousand Chinese Yuan GDP per capita increase lowers the R value by 0.0145 (95% CI [-0.0249, 

-0.0040]) before the lockdown. In the U.S., there's a strong relationship between R value and the number of 

ICU beds per capita after lockdown, with a p value at 0.001; every unit increase in ICU bed per 10,000 

population decreases the R value by 0.0110 (95% CI [-0.0171, -0.0049]). What's more, counties with more 

people over 65 years old have lower R values, but the magnitude is small, i.e. one percent increase in fraction 

of aged over 65 is associated with a 0.0092 (95% CI [-0.0135, -0.00498]) decrease in R value in the overall 

time period.  

Absolute Humidity. Absolute humidity, the mass of water vapor per cubic meter of air, relates to both 

temperature and relative humidity. Previous work shows that absolute humidity is a good solo variable 

explaining the seasonality of influenza 21. The results shown in Table 3 are only partly consistent with this 

notion21. Particularly, for the U.S. counties, relative humidity and absolute humidity are almost equivalent in 

explaining the variation of the R value (12.57% vs. 12.55%), while absolute humidity does achieve a higher 

significance level (p-value of 0.00001) compared to relative humidity (p-value of 0.019) before lockdown. 

However, the coefficient of absolute humidity is not statistically significant for Chinese cities  (p-value of 

0.312). 

Lockdown and Mobility. Intensive health emergency and lockdown policies have taken place since 

the outbreak of COVID-19 in both the U.S. and China. In the regression analysis, we use cross-sectional 
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centralized (with sample mean extracted) explanatory variables, and thus the intercepts in the regression 

models estimate the average R value of different time periods. In China, the health emergency policies on 

January 24, 2020 lowered the average R value from 2.1174 (95% CI [1.5699,2.6649]) to 0.8084 (95% CI 

[0.5334,1.0833]), which corresponds to a more than 60% drop. In the U.S., the regression results of the data 

as of April 25 show that although the R value has not decreased to less than 1, the lockdown policies have 

reduced the average R value by nearly half, from 2.1970 (95% CI [1.6631,2.7309]) to 1.1837 (95% CI 

[1.1687,1.1985]) 

We use the Baidu Mobility Index (BMI) drop as the proxy for intra-city mobility change (compared to 

the normal time) in China. Regression results show that before the lockdown, 1% decrease of BMI drop is 

associated with a decrease of R value by 0.004093 (95% CI [-0.00683, -0.001356]). After the lockdown, the 

BMI drop does not significantly affect R value. A possible reason is that the BMI variations across cities are 

quite small (all in quite low levels) after the lockdown, as the paces of intervention in different Chinese cities 

are quite similar. Overall, the negative relationship before lockdown may also imply that the rapid response 

to infectious disease risks is crucial. For the U.S., we use the M50 index, the fraction of daily median of 

maximum moving distance over that in the normal time (workdays between February 17 and March 7), as 

the proxy of mobility. It has a positive relationship with R value for both overall and after lockdown time 

period with p-values lower than 0.01, which demonstrates that counties with more social movements would 

have higher R values than others. 

Robustness Checks. We check the robustness of influences of temperature/humidity on R values over 

two conditions: 

(1) Wuhan city. Among these 100 cities in China, Wuhan is a special case with the earliest outbreak 

COVID-19. There was an increase of more than 13,000 cases in a single day (February 12, 2020) due 

to the unification of testing standards with other regions of China 22. Therefore, as a robustness check, 

we remove Wuhan city in our sample and redo the regression analysis.  

(2) Different measurement of serial intervals. We also use serial intervals in previous work (mean 7.5 

days, std 3.4 days based on 10 cases) 23 with a Weibull distribution to estimate R values of various 

cities/counties for robustness checks.  

The results of the above-mentioned two robustness checks are shown in Table A5 to A7. All of them 

show that temperature and relative humidity have a strong influence on R values with strong statistical 

significance, which are consistent with the reported results in Table 1 and Table 2. 

Discussions 
We have identified robust negative associations between temperature/humidity and COVID-19 

transmission using samples of the daily transmissibility of COVID-19, temperature and humidity for 100 

Chinese cities and 1,005 U.S. counties. Although we use different datasets (symptom-onset data for Chinese 

cities and confirmed cases data for the U.S. counties) for different countries, we obtain consistent estimates. 

This result also aligns with the evidence that high temperature and high humidity can reduce the transmission 

of influenza  21,24–27, which can be explained by two potential reasons. First, the influenza virus is more stable 

in cold environments, and respiratory droplets, as containers of viruses, remain airborne longer in dry air  28,29. 

Second, cold and dry weather can also weaken the hosts’ immunity and make them more susceptible to the 

virus 30,31. Our result is also consistent with the evidence that high temperature and high relative humidity 

reduce the viability of SARS coronavirus 32,33. 

Our study suggests that the arrival of summer and rainy season in the northern hemisphere can 

potentially reduce the transmissibility of the COVID-19, but it is unlikely that the COVID-19 pandemic will 

“automatically” diminish when summer comes, because temperature and humidity alone are not sufficient to 

make the R value less than the critical value of 1 based on their effect estimates. An increase of roughly 30°C 

in temperature and 25% in relative humidity from winter to summer reduce the R value by 0.69 and 0.20 

respectively, which would altogether lower down R value by 0.89. If all other conditions are held fixed, it is 

impossible to lower down the R value to 1 by just temperature and relative humidity, based on the fact that 

the initial R0 value is about 2.5 to 3 34. Thus, from winter to summer, the R values decline one third at most. 

According to the results of both the U.S. and China, in order to lower down the R value to 1 from the R value 
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of 3, the temperature would have to increase by 87°C or the relative humidity would have to increase by 256 

percent, if all other conditions are held fixed.  

Therefore, public health intervention is still necessary to block the transmission of COVID-19 even in 

summer. Particularly, as shown in this paper, lockdowns, constraints on human mobility, increase in hospital 

beds, etc. can effectively reduce the transmissibility of COVID-19. 

Limitation. The R2 of our regression is about 30% in China and 12% in the U.S., which means that 

about 70% to 88% of cross-city R value fluctuations cannot be explained by temperature and relative 

humidity (and controls). Moreover, the temperatures and relative humidity in our Chinese samples range 

from -21°C to 20°C and from 49% to 100%, in the U.S. the temperature and humidity range from -10°C to 

29°C and from 16% to 99%; thus it is still unknown yet whether these negative relationships still hold in 

extremely hot and cold areas. The slight differences between the estimates on the U.S. and Chinese cities 

might come from the different ranges of temperature and relative humidity. 

Methods 
Data. Records of 69,498 patients with symptom-onset days up to February 10, 2020 for 325 cities, are 

extracted from the Chinese National Notifiable Disease Reporting System. Each patient’s records contain the 

area code of his/her current residence, the area code of the reporting institution, the date of symptoms onset 

and the date of confirmation. In our paper, with symptom-onset data, we are able to estimate the precise R 
values for various Chinese cities. Note that in this work, in order to protect the patients’ privacy, no 

identifiable personal information was extracted. For the U.S. data, daily confirmed cases for 1,005 counties 

with more than 20,000 population are collected from COVID-19 database of JHU CSSE available at 

https://github.com/CSSEGISandData/COVID-19/. We obtain data from March 15 to April 25 for the 1,005 

counties, and there are total 740,843 confirmed cases for these counties as of April 25. Note that due to the 

unavailability of onset date in U.S. data, we estimate R values from daily confirmed cases for U.S. counties, 

which may be less precise than that of Chinese cities. 

We collect 4,711 cases from the epidemiological surveys available online published by the Center for 

Disease Control and Prevention of 11 provinces and municipalities including Beijing, Shanghai, Jilin, 

Sichuan, Hebei, Henan, Hunan, Guizhou, Chongqing, Hainan and Tianjin. By analyzing the records of each 

patient’s contact history with other patients, we match close contacts and screened out 105 pairs of clear virus 

carriers and the infected, which are used to estimate the serial intervals of COVID-19.  

Temperature and relative humidity data are obtained from 699 meteorological stations in China from 

http://data.cma.cn/. Population density, GDP per capita, the fraction of the population aged 65 and above, the 

number of doctors in 2018 for each city are obtained from https://data.cnki.net. The indices representing the 

number of migrants from Wuhan to other cities over the period of January 7 to February 10 and Baidu 

Mobility Indexes are obtained from https://qianxi.baidu.com/. Panel A of Table A1 in supplementary 

materials provides summary statistics of the Chinese variables with pairwise correlation shown in Table A2. 

For U.S., temperature and relative humidity data are from National Oceanic and Atmospheric 

Administration at https://www.ncdc.noaa.gov/. Population data and the fraction of over 65 for each county 

are obtained from https://www.census.gov/. GDP and person income in 2018 for each county are obtained 

from https://www.bea.gov/. Data describing mobility changes, including the fraction of maximum moving 

distance over normal time, and home-stay minutes for each county are obtained from 

https://github.com/descarteslabs/DL-COVID-19 and https://www.safegraph.com/� respectively. Gini index, 

fraction of population below poverty level, fraction of not in labor force (16 years or over), fraction of total 

household more than $200,000, fraction of food stamp/SNAP benefits are obtained from American 

Community Survey data at https://www.census.gov/. The number of ICU beds for each county is obtained 

from  https://www.kaggle.com/jaimeblasco/icu-beds-by-county-in-the-us/data. Panel B of Table A1 in 

supplementary materials provides summary statistics of the U.S. variables with pairwise correlation shown 

in Table A3. 

Construction of Effective Reproductive Numbers. We use the effective reproductive numbers, the R 

value, to quantify the transmission of COVID-19 in different cities and counties. The calculation of R values 
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contains two steps. First, we estimate the serial interval, which is the time between successive cases in a chain 

of transmission, of COVID-19 using the 105 pairs of virus carriers and the infected. We fit 105 samples of 

serial intervals with the Weibull distribution (a distribution commonly used to fit the serial interval of 

influenza) 35. Specifically, as shown in Figure A1, we fit the Weibull distribution using the Maximum 

Likelihood Estimation (MLE) method by Python package ‘Scipy’ and R package ‘MASS’ (Python version 

3.7.4, ‘Scipy’ version 1.3.1 and R version 3.6.2, ‘MASS’ version 7.3_51.4). The two results are consistent 

with each other. The mean and standard deviation of the serial intervals are 7.4 and 5.2 days, respectively. 

Note that cities with a small number of confirmed cases normally have a highly wiggled R value curve due 

to inaccurate R value estimation, therefore, we select 100 cities with more than 40 cases in our sample from 

the 325 Chines cities. We then calculate the effective reproductive number, R value, for each of the 100 

Chinese cities from the date of the first-case to February 10 through a time-dependent method based on 

Maximum Likelihood Estimation (MLE) 36. The inputs to the method are epidemic curves, i.e. the historical 

numbers of patients of each day, for a certain city. For estimation of R values in U.S. counties, the settings of 

serial intervals remain the same as China, i.e. with 7.4 days mean and 5.2 days standard deviation. We use 

the same methods of estimating R values of all 1,005 U.S. counties from the date when the first confirmed 

case occurred in the county to April 25. The main difference remains that the epidemic curves of U.S. counties 

are arranged by the date of confirmation due to lack of symptom-onset data; whereas Chinese curves are 

based on symptom-onset dates. The R values are calculated with the Package ‘R0’ developed by Boelle & 

Obadia with the R version 3.6.2 and ‘R0’ version 1.2_6.37 

Study Period. We aim to study the influences of various factors on R value under the outdoor 

environment, therefore if people stay at home for most of their time under the restrictions of the isolation 

policy, weather conditions are unlikely to influence the virus transmission due to no chance of contact among 

people. We, therefore, perform separate analyses before and after the large-scale stay-at-home policy for both 

China (January 24) and the U.S. (April 7), respectively. Note that the first-level response to major public 

health emergencies in many major Chinese cities and provinces including Beijing and Shanghai were 

announced on 24 January. Moreover, the number of cases in most cities was too small before January 18 to 

estimate the R value accurately. Thus, we take the daily R values from January 19 to January 23 for each city 

as the before lockdown period. Although Wuhan City imposed a travel restriction at 10 a.m. on January 23, 

a large number of people still left Wuhan before 10 a.m. on that day, so our sample still includes January 23.  

We take January 24 to February 10 as the period after lockdown for China. As reported by The New York 

Times, most states had announced state-wise stay-at-home orders from April 7 for the U.S. 20. Moreover, the 

number of cases in most counties before March 15 is too small for estimating R value. Thus, we take daily R 

values from March 15 to April 6 for each county as values during the before-lockdown period and daily R 

values from April 7 to April 25 as values during the after-lockdown period. 

Statistical Analysis. We use six-day average temperature and relative humidity up to and including the 

day when the R value is measured, which is inspired by the five-day incubation period estimated from Johns 

Hopkins University 19 plus one-day onset. In the data of this work, the series of the 6-days average 

temperature, the 6-days average relative humidity, and the daily effective reproduction number R are mostly 

non-stationary. We find declining trends of R values for nearly all China cities and the U.S. counties, which 

may be due to the nature of the disease and due to people’s raised awareness and increased self-protection 

measures even before the lockdown orders from the government. Table A4 Panel A and Panel B in 

supplementary materials show the panel unit root test results for China and U.S. data, respectively. As such, 

direct time-series regression cannot be applied, since it will lead to the so-called spurious regression38, that 

is, a regression that provides misleading statistical evidence of a linear relationship between non-stationary 

time series variables. We, hence, adopt the Fama-Macbeth methodology18, which consists of a series of cross-

sectional regressions and has been proved effective in various disciplines including finance and economics. 

The details are illustrated as follows. 

Fama-Macbeth Regression 18. Fama-Macbeth regression is a two steps procedure. In the first step, it 

runs cross-sectional regression at each point of time; the second step estimates the coefficient as the average 

of the cross-sectional regression estimates: 
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Step 1: Denote the time length as T, the number of controls as m. For each time t, we run a cross-sectional 

regression: 

!",$ = &$ + ($)*+,$ ∗ -./0",$ + (12*",$ ∗ ℎ4/5",$ + ∑ (&78-97:;,-
<
;=1 ∗ &78-97:;,5,-+>",$	

Step 2: Estimate the average of the first step regression coefficient estimates: 
(@A =

B
C ∑ (A,$C

$DB  
We use the Newey-West approach39 to adjust the time-series autocorrelation and heteroscedasticity in 

calculating standard errors in the second step. Note that Fama-MacBeth regression is commonly used in 

estimating parameters for finance and economic models that are valid even in the presence of the cross-

sectional correlation. To the best of our knowledge, our study is a novel application of the Fama-Macbeth 

method in urgent public health and epidemiological problems. 

Specifically, on each day during a study period, we perform a cross-sectional regression of the daily R 

values of various cities or counties on their 6-day average temperature and relative humidity, and several 

categories of control variables as follows: 

(1) Demographics. Population density and fraction of people aged 65 and older for both China and the U.S. 

(2) Socio-economic statuses. GDP per capita for Chinese cities. For the U.S. counties, Gini index and the  

first PCA factor derived from several factors including GDP per capita, personal income, the fraction 

of population below poverty level, the fraction of population not in labor force (16 years or over), the 

fraction of population with total household more than $200,000, the fraction of food stamp/SNAP 

benefits. 

(3) Geographical variables. Latitude and longitude for both China and the U.S. 

(4) Healthcare. The number of doctors for Chinese cities and the number of ICU beds per capita for U.S. 

counties. 

(5) Human mobility status.  For Chinese cities, the number of people migrated from Wuhan in the 14 days 

prior to the R measurement, and the drop rate of BMI compared to the same day in the first week of Jan 

2020. For U.S. counties, the fraction of maximum moving distance over the median of normal time 

(weekdays from Feb 17 to March 7), and home-stay minutes are used as mobility proxies. All human 

mobility controls are averaged over a 6-day period in the regression. 

All analyses are conducted in the software Stata version 16.0. 
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(a) 

 

 
              (b)                                                                            (c) 

 
Figure 1: A city-level visualization of the COVID-19 transmission (a), temperature (b) and relative 

humidity (c).  

Average R values from January 19 to 23, 2020 for 100 Chinese cities are used in subplot (a). The average 

temperature and relative humidity for the same period are plotted in (b) and (c).  
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(a) 

 

 
(b)                                                                                     (c) 

 

Figure 2: A county-level visualization of the COVID-19 transmission (a), temperature (b) and relative 

humidity (c) in the U.S.  

Average R values from March 15 to April 6, 2020 for 1,005 U.S. counties are used in subplot (a). The average 

temperature and relative humidity for the same period are plotted in (b) and (c).  
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Table 1: Fama-Macbeth Regression for Chinese Cities  

Daily R values from January 19 to February 10 and averaged temperature and relative humidity over 6 days 

up to and including the day when R value is measured, are used in the regression for 100 Chinese cities with 

more than 40 cases. The regression is estimated by the Fama-MacBeth approach.  

 

  Overall 
Before Lockdown 

(Jan 24) 

After Lockdown  

(Jan 24) 

R2 0.3013 0.1895 0.3323 

Temperature    

coef -0.0220 -0.0260 -0.0209 

95%CI [-0.0356,-0.0085] [-0.0395,-0.0125] [-0.0378,-0.0041] 

std.err 0.0065 0.0049 0.0080 

t-stat -3.38 -5.35 -2.62 

p-value 0.003 0.006 0.018 

Relative Humidity    

coef -0.0059 -0.0076 -0.0054 

95%CI [-0.0098,-0.0019] [-0.0108,-0.0045] [-0.0104,-0.0004] 

std.err 0.0019 0.0011 0.0024 

t-stat -3.08 -6.70 -2.29 

p-value 0.005 0.003 0.035 

Population Density    

coef 0.0259 0.1188 0.0001 

95%CI [-0.0292,0.0810] [0.0573,0.1803] [-0.0359,0.0362] 

std.err 0.0266 0.0222 0.0171 

t-stat 0.98 5.36 0.01 

p-value 0.340 0.006 0.993 

Percentage over 65    

coef 0.1255 0.3230 0.0707 

95%CI [-1.7524,2.0034] [-1.1797,1.8256] [-2.3231,2.4644] 

std.err 0.9055 0.5412 1.1346 

t-stat 0.14 0.60 0.06 

p-value 0.891 0.583 0.951 

GDP per capita    

coef 0.0045 -0.0145 0.0098 

95%CI [-0.0157,0.0248] [-0.0249,-0.0040] [-0.0105,0.0301] 

std.err 0.0098 0.0038 0.0096 

t-stat 0.46 -3.85 1.02 

p-value 0.647 0.018 0.322 

No. of doctors    

coef -0.0058 -0.0109 -0.0043 

95%CI [-0.0090,-0.0025] [-0.0163,-0.0056] [-0.0064,-0.0022] 

std.err 0.0015 0.0019 0.0010 

t-stat -3.71 -5.69 -4.41 

p-value 0.001 0.005 0.0004 
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  Overall 
Before Lockdown 

(Jan 24) 

After Lockdown  

(Jan 24) 

Drop of BMI    

coef 0.3051 -0.4093 0.5036 

95%CI [-0.3352,0.9454] [-0.6830,-0.1356] [-0.1133,1.1205] 

std.err 0.3087 0.0986 0.2924 

t-stat 0.99 -4.15 1.72 

p-value 0.334 0.014 0.103 

Inflow population from Wuhan   

coef -0.0052 -0.0006 -0.0065 

95%CI [-0.0106,0.0002] [-0.0010,-0.0001] [-0.0127,-0.0003] 

std.err 0.0026 0.0002 0.0029 

t-stat -2.00 -3.58 -2.21 

p-value 0.058 0.023 0.041 

Latitude    

coef 0.0046 0.0096 0.0032 

95%CI [-0.0145,0.0236] [-0.0133,0.0325] [-0.0211,0.0274] 

std.err 0.0092 0.0083 0.0115 

t-stat 0.50 1.16 0.28 

p-value 0.625 0.311 0.786 

Longitude    

coef -0.011 -0.0270 -0.0065 

95%CI [-0.0199,-0.0021] [-0.0528,-0.0013] [-0.0137,0.0007] 

std.err 0.0043 0.0093 0.0034 

t-stat -2.56 -2.92 -1.91 

p-value 0.018 0.043 0.074 

const    

coef 1.0929 2.1174 0.8084 

95%CI [0.5078,1.6781] [1.5699,2.6649] [0.5334,1.0833] 

std.err 0.2821 0.1972 0.1303 

t-stat 3.87 10.74 6.20 

p-value 0.001 0.0004 0 
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Table 2: Fama-Macbeth Regression for the U.S. Counties 

Daily R values from March 15 to April 25 and temperature and relative humidity over 6 days up to and 

including the day when R value is measured, are used in the regression for 1,005 U.S. counties with more 

than 20,000 population. The regression is estimated by the Fama-MacBeth approach.  

 

  Overall 
Before Lockdown  

(April 7) 

After Lockdown  

(April 7) 

R2 0.1155 0.1344 0.0925 

Temperature   

coef -0.0165 -0.0204 -0.0118 

95%CI [-0.0257,-0.0073] [-0.0311,-0.0096] [-0.0279,0.0043] 

std.err 0.0045 0.0052 0.0077 

t-stat -3.62 -3.93 -1.54 

p-value 0.001 0.001 0.141 

Relative Humidity   

coef -0.0049 -0.0080 -0.0013 

95%CI [-.0.0103,0.0005] [-0.0150,-0.0010] [-0.0027,0.0001] 

std.err 0.0027 0.0034 0.0007 

t-stat -1.84 -2.36 -1.90 

p-value 0.073 0.028 0.073 

Population Density   

coef 4.39E-6 7.00E-6 1.23E-6 

95%CI [-0.00001,0.00002] [-0.00003,0.00004] [9.84E-7,3.45E-6] 

std.err 8.44E-6 0.00002 1.05E-6 

t-stat 0.52 0.44 1.17 

p-value 0.606 0.666 0.258 

Percentage over 65   

coef -0.9243 -1.1084 -0.7014 

95%CI [-1.3510,-0.4976] [-1.8119,-0.4050] [-1.0696,-0.3332] 

std.err 0.2113 0.3392 0.1752 

t-stat -4.37 -3.27 -4.00 

p-value 0.0001 0.004 0.001 

Gini    

coef -1.8428 -1.9255 -1.7426 

95%CI [-3.5058,-0.1797] [-4.4539,0.6028] [-2.4697,-1.0154] 

std.err 0.8235 1.2191 0.3461 

t-stat -2.24 -1.58 -5.03 

p-value 0.031 0.129 0.0001 

Socio-economic factor   

coef 0.0916 0.1406 0.0324 

95%CI [0.0338,0.1495] [0.0886,0.1925] [-0.0108,0.0756] 

std.err 0.0287 0.0250 0.0206 

t-stat 3.20 5.61 1.58 

p-value 0.003 0.00001 0.133 
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  Overall 
Before Lockdown  

(April 7) 

After Lockdown  

(April 7) 

No. of ICU beds per capita   

coef -0.0097 -0.0086 -0.0110 

95%CI [-0.0233,0.0039] [-0.0299,0.0126] [-0.0171,-0.0049] 

std.err 0.0067 0.0102 0.0029 

t-stat -1.44 -0.84 -3.81 

p-value 0.156 0.408 0.001 

Fraction of maximum moving distance over normal time 

coef 0.0038 0.0022 0.0057 

95%CI [0.0014,0.0062] [-0.0008,0.0053] [0.0048,0.0066] 

std.err 0.0012 0.0015 0.0004 

t-stat 3.23 1.50 13.71 

p-value 0.002 0.147 0 

Home stay minutes   

coef 0.0003 0.0008 -0.0002 

95%CI [-0.0002,0.0008] [0.0004,0.0011] [-0.0004, -0.00003] 

std.err 0.0002 0.0002 0.0001 

t-stat 1.32 4.46 -2.40 

p-value 0.194 0.0002 0.027 

Latitude    

coef -0.0174 -0.0333 0.0018 

95%CI [-0.0357,0.0009] [-0.0492,-0.0173] [-0.0189,0.0224] 

std.err 0.0091 0.0077 0.0098 

t-stat -1.92 -4.33 0.18 

p-value 0.061 0.0003 0.861 

Longitude    

coef 0.0068 0.0102 0.0027 

95%CI [0.0031,0.0105] [0.0082,0.0122] [0.0004,0.0049] 

std.err 0.0018 0.0010 0.0011 

t-stat 3.71 10.51 2.49 

p-value 0.001 0 0.023 

const    

coef 1.7386 2.1970 1.1837 

95%CI [1.1784,2.2988] [1.6631,2.7309] [1.1687,1.1985] 

std.err 0.2774 0.2574 0.0071 

t-stat 6.27 8.53 166.63 

p-value 0 0 0 
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Table 3: Absolute Humidity  

Table 3 shows the explanatory power of the absolute humidity in the pre-lockdown period for Chinese cities 

from January 19 to 23 (Panel A) and the U.S. counties from March 15 to April 6 (Panel B).  

 

 

Panel A: Regression for Chinese Cities 

  Temperature Relative Humidity Absolute Humidity 

R2 0.1817 0.1783 0.1799 

Temperature    

coef -0.0151   

95%CI [-0.0262, -0.0040]   

std.err 0.0040   

t-stat -3.78   

p-value 0.019   

Relative Humidity    

coef  -0.0038  

95%CI  [-0.0060, -0.0016]  

std.err  0.0008  

t-stat  -4.83  

p-value  0.008  

Absolute Humidity    

coef   -0.0159 

95%CI   [-0.0545, 0.0227] 

std.err   0.0139 

t-stat   -1.15 

p-value   0.316 

Population Density    

coef 0.1222 0.1062 0.1190 

95%CI [0.0500, 0.1943] [0.0441, 0.1684] [0.0371, 0.2010] 

std.err 0.0260 0.0224 0.0295 

t-stat 4.70 4.74 4.03 

p-value 0.009 0.009 0.016 

Percentage over 65    

coef -0.3769 -0.5738 -0.8898 

95%CI [-1.6135, 0.8597] [-1.6715, 0.5239] [-1.9335, 0.1538] 

std.err 0.4454 0.3954 0.3759 

t-stat -0.85 -1.45 -2.37 

p-value 0.445 0.220 0.077 

GDP per capita    

coef -0.0174 -0.0190 -0.0205 

95%CI [-0.0303, -0.0046] [-0.0328, -0.0052] [-0.0340, -0.0069] 

std.err 0.0046 0.0050 0.0049 

t-stat -3.76 -3.81 -4.20 

p-value 
0.020 

 

0.019 0.014 
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  Temperature Relative Humidity Absolute Humidity 

No. of doctors    

coef -0.0109 -0.0111 -0.0111 

95%CI [-0.0167, -0.0051] [-0.0167, -0.0054] [-0.0168, -0.0053] 

std.err 0.0021 0.0020 0.0021 

t-stat -5.21 -5.45 -5.37 

p-value 0.006 0.006 0.006 

Drop of BMI    

coef -0.5174 -0.4236 -0.5370 

95%CI [-0.8038, -0.2309] [-0.6320, -0.2152] [-0.8650, -0.2090] 

std.err 0.1032 0.0751 0.1181 

t-stat -5.01 -5.64 -4.55 

p-value 0.007 0.005 0.010 

Inflow population from Wuhan   

coef -0.0006 -0.0004 -0.0005 

95%CI [-0.0010,-0.0001] [-0.0009, 0.00003] [-0.0010, -8.04E-6] 

std.err 0.0001 0.0002 0.0002 

t-stat -3.70 -2.57 -2.82 

p-value 0.021 0.062 0.048 

Latitude    

coef 0.0283 0.0422 0.0396 

95%CI [0.0104, 0.0461] [0.0331, 0.0512] [0.0267, 0.0525] 

std.err 0.0064 0.0032 0.0046 

t-stat 4.40 12.98 8.53 

p-value 0.012 0.0002� 0.001 

Longitude    

coef -0.0299 -0.0273 -0.0289 

95%CI [-0.0559, -0.0039] [-0.0523, -0.0023] [-0.0543, -0.0034] 

std.err 0.0094 0.0090 0.0092 

t-stat -3.19 -3.03 -3.15 

p-value 0.033 0.039 0.035 

const    

coef 2.1182 2.1184 2.1176 

95%CI [1.5681, 2.6684] [1.5667, 2.6700] [1.5682, 2.6670] 

std.err 0.1981 0.1987 0.1979 

t-stat 10.69 10.66 10.70 

p-value 0.0004 0.0004 0.0004 
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Panel B: Regression for the U.S. Counties 

  Temperature Relative Humidity Absolute Humidity 

R2 0.1210 0.1257 0.1255 

Temperature   

coef -0.0138   

95%CI [-0.0267,-0.0009]   

std.err 0.0062   

t-stat -2.21   

p-value 0.038   

Relative Humidity   

coef  -0.0078  

95%CI  [-0.0140, -0.0014]  

std.err  0.0031  

t-stat  -2.53  

p-value  0.019  

Absolute Humidity   

coef   -0.0496 

95%CI   [-0.0664, -0.0327] 

std.err   0.0081 

t-stat   -6.11 

p-value   0 

Population Density   

coef 6.51E-6 6.25E-6 5.50E-6 

95%CI [-0.00002, 0.00004] [-0.00003,0.00004] [-0.00002, 0.00004] 

std.err 0.00002 0.00002 0.00001 

t-stat 0.43 0.40 0.38 

p-value 0.671 0.689 0.711 

Percentage over 65   

coef -0.9306 -1.0137 -0.9071 

95%CI [-1.5574, -0.3038] [-1.7090, -0.3183] [-1.6107, -0.2034] 

std.err 0.3022 0.3353 0.339 

t-stat -3.08 -3.02 -2.67 

p-value 0.005 0.006 0.014 

Gini    

coef -1.6920 -1.8024 -1.7177 

95%CI [-4.4260, 1.0420] [-4.3390, 0.7342] [-4.3598, 0.9263] 

std.err -1.3183 -1.2231 1.2744 

t-stat -1.28 -1.47 -1.35 

p-value 0.213 0.155 0.192 

Socio-economic factor   

coef 0.1371 0.1265 0.1363 

95%CI [0.0842,0.1900] [0.0783, 0.1747] [0.0914, 0.1812] 

std.err 0.0255 0.0232 0.0217 
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  Temperature Relative Humidity Absolute Humidity 

t-stat 5.38 5.44 6.30 

p-value 0.00002 0.00002 0 

No. of ICU beds per capita   

coef -0.0122 -0.0097 -0.0127 

95%CI [-0.0359,0.0114] [-0.0294,0.0100] [-0.0351,-0.0097] 

std.err 0.0114 0.0095 0.0108 

t-stat -1.07 -1.02 -1.17 

p-value 0.294 0.317 0.253 

Fraction of maximum moving distance over normal time 

coef 0.0005 0.0014 0.0011 

95%CI [-0.0038,0.0048] [-0.0015, 0.0043] [-0.0023,0.0045] 

std.err 0.0021 0.0014 0.0016 

t-stat 0.24 0.98 0.65 

p-value 0.815 0.338 0.520 

Home stay minutes   

coef 0.0006 0.0006 0.0006 

95%CI [0.0003, 0.0009] [0.0003,0.0010] [0.0003, 0.0010] 

std.err 0.0001 0.0002 0.0002 

t-stat 3.94 3.91 3.88 

p-value 0.001 0.001 0.001 

Latitude    

coef -0.0201 -0.0097 -0.0361 

95%CI [-0.0367, -0.0036] [-0.0174, -0.0020] [-0.0511, -0.0211] 

std.err 0.0080 0.0037 0.0072 

t-stat -2.53 -2.61 -4.98 

p-value 0.019 0.016 0.00006 

Longitude    

coef 0.0104 0.0098 0.0107 

95%CI [0.0084, 0.0123] [0.0079, 0.0117] [0.0086,0.0128] 

std.err 0.0009 0.0009 0.0010 

t-stat 11.02 10.66 10.52 

p-value 0 0 0 

const    

coef 2.2121 2.1911 2.2137 

95%CI [1.6662, 2.7580] [1.6600, 2.7222] [1.6659, 2.7616] 

std.err 0.2632 0.2561 0.2641 

t-stat 8.40 8.56 8.38 

p-value 0 0 0 
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Figure A1: Estimation of the serial interval with the Weibull distribution 

Bars denote the probability of occurrences in specified bins, and the red curve is the density function of 

the estimated Weibull distribution.  
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Table A1: Data Summary 

This table summarizes the variables used in this paper. Panel A and B summarizes the data of Chinese 

cites and the U.S. counties. 

Panel A: Data Summary for the Chinese Cities 

 Mean Std   Min Max 

R 1.072 0.707 0.131 4.609 

6-Day Average Temperature (Celsius) 4.468 6.842 -21.100 19.733 

6-Day Average Relative Humidity (%) 77.147 9.589 48.667 99.833 

GDP per Capita (RMB 10k) 6.800 3·716 2.159 18.957 

Population Density (k/km2) 0.692 0.812 0.00800 6.522 

No· Doctors (k) 16.020 11.488 1.972 68.549 

Proxy for Inflow population from Wuhan (10 k) 5.096 14.833 0.000 138.154 

Fraction over 65 0.121 0.0186 0.0826 0.152 

Drop of BMI compared to first week 2020 -0.413 0.347 -0.886 0.759 

Panel B: Data Summary for the U.S. Counties 

 Mean Std   Min Max 

R 1.517 0.836 0.040 4.997 

6-Day Average Temperature (Celsius) 10.738 6.503 -10.192 28.826 

6-Day Average Relative Humidity (%) 67.815 11.932 16.388 99.096 

Population Density (/mile2) 374.275 1678.13 2.562 48229.375 

Fraction over 65 0.167 0.0423 0.0633 0.374 

Gini index 0.449 0.0309 0.357 0.597 

GDP per capita (k Dollar) 45.599 24.417 13.006 378.762 

Fraction below poverty level 15.970 5.604 4.000 38.100 

Personal income (Dollar) 46923.2 14586.7 26407 251728 

Fraction of not in labor force, 16 years or over 38.842 6.737 19.600 62.000 

Fraction of total household more than $200,000 3.564 2.948 0.400 23.100 

Fraction of food stamp/SNAP benefits 13.854 5.355 1.400 38.800 

No. ICU beds per 10000 capita 2.182 1.945 0.000 17.357 

Fraction of maximum moving distance over normal time 33.286 25.918 0.000 478.000 

Home-stay minutes 749.064 145.883 206.585 1275.341 
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Table A2: Pairwise Correlation Analysis for Chinese Cities 
Pairwise correlation coefficients are obtained by averaging all correlation coefficients from each time step in the Fama-Macbeth approach. 
 

�  Temperature 
Relative 

Humidity 

Population 

Density 
Percentage over 65 

GDP per 

capita 

No. of 

doctors 

Drop of 

BMI 

Inflow population 

from Wuhan 
Latitude Longitude 

Temperature 1.00 0.32 0.33 -0.37 0.33 0.13 -0.21 0.04 -0.92 -0.57 

Relative Humidity 0.32 1.00 -0.08 0.01 -0.16 -0.09 0.29 0.09 -0.44 -0.32 

Population Density 0.33 -0.08 1.00 -0.27 0.57 0.29 -0.40 -0.09 -0.27 -0.03 

Percentage over 65 -0.37 0.01 -0.27 1.00 -0.20 0.13 0.25 0.06 0.45 0.13 

GDP per capita 0.33 -0.16 0.57 -0.20 1.00 0.45 -0.76 -0.14 -0.25 0.05 

No. of doctors 0.13 -0.09 0.29 0.13 0.45 1.00 -0.39 -0.12 -0.06 -0.22 

Drop of BMI -0.21 0.29 -0.40 0.25 -0.76 -0.39 1.00 0.04 0.12 -0.14 

Inflow population 

from Wuhan 
0.04 0.09 -0.09 0.06 -0.14 -0.12 0.04 1.00 -0.05 -0.12 

Latitude -0.92 -0.44 -0.27 0.45 -0.25 -0.06 0.12 -0.05 1.00 0.59 

Longitude -0.57 -0.32 -0.03 0.13 0.05 -0.22 -0.14 -0.12 0.59 1.00 
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Table A3: Pairwise Correlation Analysis for the U.S. Counties 
Pairwise correlation coefficients are obtained by averaging all correlation coefficients from each time step in the Fama-Macbeth approach. 
 

�  Temperature 
Relative 

Humidity 

Population 

Density 
Percentage over 65 Gini Se-factor 

No. of ICU beds per 

capita 
M50_index 

Home stay 

minutes 
Latitude Longitude 

Temperature 1.00 0.17 0.01 -0.05 0.34 0.36 0.11 0.34 0.00 -0.90 0.04 

Relative Humidity 0.17 1.00 -0.06 0.08 0.05 0.02 0.00 0.07 0.10 -0.20 0.12 

Population Density 0.01 -0.06 1.00 -0.11 0.23 0.07 0.07 -0.19 0.11 0.01 0.10 

Percentage over 65 -0.05 0.08 -0.11 1.00 0.02 0.14 -0.04 -0.03 -0.18 0.05 0.13 

Gini 0.34 0.05 0.23 0.02 1.00 0.53 0.37 0.15 -0.17 -0.35 0.07 

Socio-economic factor 0.36 0.02 0.07 0.14 0.53 1.00 0.21 0.32 -0.41 -0.34 0.00 

No. of ICU beds per 

capita 
0.11 0.00 0.07 -0.04 0.37 0.21 1.00 0.18 -0.10 -0.11 0.10 

M50_index 0.34 0.07 -0.19 -0.03 0.15 0.32 0.18 1.00 -0.37 -0.37 -0.08 

Home-stay minutes 0.00 0.10 0.11 -0.18 -0.17 -0.41 -0.10 -0.37 1.00 0.06 -0.08 

Latitude -0.90 -0.20 0.01 0.05 -0.35 -0.34 -0.11 -0.37 0.06 1.00 -0.06 

Longitude 0.04 0.12 0.10 0.13 0.07 0.00 0.10 -0.08 -0.08 -0.06 1.00 
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Table A4: Unit Root Test for R, Temperature and Relative Humidity 
Panel A and B show the results of Handri LM test 1 with null hypotheses of non-unit-roots, for Chinese 
cities and the U.S. counties, respectively. 
 

Panel A: Test Results for Chinese Cities 
 R value Temperature Relative Humidity 

z-stat 18.7472 51.1532 42.6092 

p-value 0.0000 0.0000 0.0000 

 
Panel B: Test Results for the U.S. Counties 

 R value Temperature Relative Humidity 

z-stat 43.0116 61.0510 76.8665 

p-value 0.0000 0.0000 0.0000 
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Table A5: Fama-Macbeth Regression for Chinese Cities except Wuhan 
Daily R values from January 19 to February 10 and the averaged temperature and relative humidity over 
6 days up to and including the day when R value is measured, are used in the regression for 99 Chinese 
cities (without Wuhan). The regression is estimated by the Fama-MacBeth approach.  
 
 
 
�  Overall Before Lockdown (Jan 24) After Lockdown (Jan 24) 

R2 0.3029 0.1915 0.3339 

Temperature    

coef -0.0223 -0.0287 -0.0205 

95%CI [-0.0358, -0.0088] [-0.0406, -0.0168] [-0.0369, -0.0041] 

std.err 0.0065 0.0043 0.0078 

t-stat -3.44 -6.69 -2.64 

p-value 0.002 0.003 0.017 

Relative Humidity    

coef -0.0060 -0.0071 -0.0056 

95%CI [-0.0100, -0.0019] [-0.0105, -0.0038] [-0.0108, -0.0005] 

std.err 0.0019 0.0012 0.0024 

t-stat -3.07 -5.86 -2.32 

p-value 0.006 0.004 0.033 

Population Density    

coef 0.0262 0.1198 0.0002 

95%CI [-0.0290, 0.0814] [0.0564, 0.1832] [-0.0352, 0.0356] 

std.err 0.0266 0.0228 0.0168 

t-stat 0.98 5.25 0.01 

p-value 0.336 0.006 0.991 

Percentage over 65    

coef 0.1316 0.3849 0.0612 

95%CI [-1.7302, 1.9933] [-1.0386, 1.8084] [-2.3111, 2.4335] 

std.err 0.8977 0.5127 1.1244 

t-stat 0.15 0.75 0.05 

p-value 0.885 0.495 0.957 

GDP per capita    

coef 0.0048 -0.0110 0.0092 

95%CI [-0.0148, 0.0244] [-0.0252, 0.0033] [-0.0114,0.0298] 

std.err 0.0095 0.0051 0.0098 

t-stat 0.51 -2.13 0.94 

p-value 0.616 0.100 0.360 

No. of doctors    

coef -0.0057 -0.0109 -0.0043 

95%CI [-0.0089, -0.0025] [-0.0162, -0.0056] [-0.0064,-0.0022] 

std.err 0.0015 0.0019 0.0010 

t-stat -3.73 -5.69 -4.35 

p-value 0.001 0.005 0.0004 
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�  Overall Before Lockdown (Jan 24) After Lockdown (Jan 24) 

Drop of BMI    

coef 0.3135 -0.4107 0.5146 

95%CI [-0.3290, -0.9559] [-0.6870, -0.1344] [-0.0995, 1.1287] 

std.err 0.3098 0.0995 0.2911 

t-stat 1.01 -4.13 1.77 

p-value 0.323 0.015 0.095 

Inflow population from Wuhan   

coef -0.0052 -0.0006 -0.0065 

95%CI [-0.0106, 0.0002] [-0.0011, -0.0002] [-0.0128, -0.0002] 

std.err 0.0026 0.0002 0.0030 

t-stat -1.99 -3.93 -2.17 

p-value 0.059 0.017 0.044 

Latitude    

coef 0.0040 0.0082 0.0029 

95%CI [-0.0149, 0.0230] [-0.0132, 0.0296] [-0.0213, 0.0271] 

std.err 0.0091 0.0077 0.0115 

t-stat 0.44 1.06 0.25 

p-value 0.663 0.347 0.804 

Longitude    

coef -0.0110 -0.0293 -0.0059 

95%CI [-0.0209, -0.0010] [-0.0579, -0.0008] [-0.0134, 0.0017] 

std.err 0.0048 0.0103 0.0036 

t-stat -2.29 -2.85 -1.64 

p-value 0.032 0.046 0.119 

const    

coef 1.0925 2.1209 0.8069 

95%CI [0.5059, 1.6792] [1.5697, 2.6721] [0.5327, 1.0810] 

std.err 0.2829 0.1985 0.1299 

t-stat 3.86 10.68 6.21 

p-value 0.001 0 0 
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Table A6: Relationship between Temperature, Relative Humidity, and R Values: Robustness 
Check with the Serial Interval of Mean 7.5 Days and Standard Deviation 3.4 days in Li et al 

(2020) 2 for Chinese Cities 
This table utilizes estimated serial interval in a previous paper (mean 7.5 days, std 3.4 days) 2 to 
construct R values for China. The table reports the coefficients of the effective reproductive number, R 
values, on an intercept, temperature, relative humidity and control variables in the Fama-MacBeth 
regressions. 
�  Overall Before Lockdown (Jan 24) After Lockdown (Jan 24) 

R2 0.2843 0.2009 0.3074 

Temperature    

coef -0.0267 -0.0430 -0.0222 

95%CI [-0.0486,-0.0048] [-0.0694,-0.0165] [-0.0456,0.0012] 

std.err 0.0106 0.0095 0.0111 

t-stat -2.53 -4.52 -2.00 

p-value 0.019 0.011 0.061 

Relative Humidity    

coef -0.0076 -0.0104 -0.0068 

95%CI [-0.0121,-0.0031] [-0.0166,-0.0041] [-0.0121,-0.0015] 

std.err 0.0022 0.0023 0.0025 

t-stat -3.47 -4.59 -2.69 

p-value 0.002 0.010 0.015 

Population Density    

coef 0.0223 0.1673 -0.0180 

95%CI [-0.0672,0.1118] [0.0350,0.2996] [-0.0825,0.0465] 

std.err 0.0432 0.0477 0.0306 

t-stat 0.52 3.51 -0.59 

p-value 0.611 0.025 0.563 

Percentage over 65    

coef -0.7581 0.3976 -1.0791 

95%CI [-3.7515,2.2353] [-2.9474,3.7426] [-4.8094,2.6511] 

std.err 1.4434 1.2048 1.7680 

t-stat -0.53 0.33 -0.61 

p-value 0.605 0.758 0.550 

GDP per capita    

coef 0.0058 -0.0291 0.0154 

95%CI [-0.0246,0.0361] [-0.0390,-0.0193] [-0.0124,0.0433] 

std.err 0.0147 0.0035 0.0132 

t-stat 0.39 -8.21 1.17 

p-value 0.698 0.001 0.258 

No. of doctors    

coef -0.0065 -0.0135 -0.0045 

95%CI [-0.0107,-0.0023] [-0.0205,-0.0065] [-0.0067,-0.0024] 

std.err 0.0020 0.0025 0.0010 

t-stat -3.22 -5.35 -4.47 

p-value 0.004 0.006 0.0003 
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�  Overall Before Lockdown (Jan 24) After Lockdown (Jan 24) 

Drop of BMI    

coef 0.3287 -0.7465 0.6274 

95%CI [-0.5135,1.1709] [-1.3448,-0.1483] [-0.1037,1.3585] 

std.err 0.4061 0.2155 0.3465 

t-stat 0.81 -3.46 1.81 

p-value 0.427 0.026 0.088 

Inflow population from Wuhan   

coef -0.0053 -0.0003 -0.0067 

95%CI [-0.0114,0.0008] [-0.0009,0.0003] [-0.0139,0.0006] 

std.err 0.0029 0.0002 0.0034 

t-stat -1.79 -1.34 -1.94 

p-value 0.087 0.250 0.069 

Latitude �   

coef 0.0026 0.0045 0.0021 

95%CI [-0.0245,0.0298] [-0.0518,0.0608] [-0.0302,0.0344] 

std.err 0.0131 0.0203 0.0153 

t-stat 0.20 0.22 0.14 

p-value 0.843 0.835 0.893 

Longitude    

coef -0.0103 -0.0305 -0.0046 

95%CI [-0.0233,0.0027] [-0.0796,0.0186] [-0.0160,0.0067] 

std.err 0.0063 0.0177 0.0054 

t-stat -1.64 -1.72 -0.86 

p-value 0.116 0.16 0.399 

const    

coef 1.0616 2.2036 0.7444 

95%CI [0.4353,1.6879] [1.431,2.9762] [0.5063,0.9826] 

std.err 0.3020 0.2783 0.1129 

t-stat 3.52 7.92 6.60 

p-value 0.002 0.001 0 
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Table A7: Relationship between Temperature, Relative Humidity, and R Value: Robustness 
Check with the Serial Interval of Mean 7.5 Days and Standard Deviation 3.4 days in Li et al 

(2020) 2 for the U.S. Counties 
This table utilizes estimated serial interval in a previous paper (mean 7.5 days, std 3.4 days) 2 to 
construct R values for the U.S. counties. The table reports the coefficients of the effective reproductive 
number, R value, on an intercept, temperature, relative humidity and control variables in the Fama-
MacBeth regressions. 
�  Overall Before Lockdown (April 7) After Lockdown (April 7) 

R2 0.1170 0.1508 0.0760 

Temperature   

coef -0.0199 -0.0271 -0.0113 

95%CI [-0.0330,-0.0069] [-0.0456,-0.0086] [-0.0296,0.0071] 

std.err 0.0065 0.0089 0.0087 

t-stat -3.08 -3.03 -1.29 

p-value 0.004 0.006 0.214 

Relative Humidity   

coef -0.0052 -0.0086 -0.0011 

95%CI [-0.0114,0.0011] [-0.0169,-0.0003] [-0.0030,0.0008] 

std.err 0.0031 0.0040 0.0009 

t-stat -1.68 -2.14 -1.20 

p-value 0.101 0.044 0.244 

Population Density   

coef 0.00002 3.00E-05 5.07E-08 

95%CI [-0.00003,0.00006] [-0.0001,0.0001] [-2.20e-6,2.30e-6] 

std.err 0.00002 4.00E-05 1.07E-06 

t-stat 0.73 0.71 0.05 

p-value 0.469 0.483 0.963 

Percentage over 65   

coef -0.9733 -1.2685 -0.6159 

95%CI [-1.4465,-0.5000] [-1.9245,-0.6124] [-1.0408,-0.1911] 

std.err 0.2343 0.3163 0.2022 

t-stat -4.15 -4.01 -3.05 

p-value 0.0002 0.001 0.007 

Gini    

coef -1.9913 -2.4119 -1.4822 

95%CI [-3.6305,-0.3521] [-4.9880,0.1643] [-2.2360,-0.7285] 

std.err 0.8117 1.2422 0.3588 

t-stat -2.45 -1.94 -4.13 

p-value 0.018 0.065 0.001 

Socio-economic factor   

coef 0.0906 0.1424 0.0279 

95%CI [0.0166,0.1646] [0.0627,0.2222] [-0.0112,0.0670] 

std.err 0.0366 0.0385 0.0186 

t-stat 2.47 3.70 1.50 

p-value 0.018 0.001 0.152 
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�  Overall Before Lockdown (April 7) After Lockdown (April 7) 

No. of ICU beds per capita   

coef -0.0113 -0.0127 -0.0096 

95%CI [-0.0263,0.0038] [-0.0367,0.0113] [-0.0147,-0.0044] 

std.err 0.0075 0.0116 0.0025 

t-stat -1.51 -1.10 -3.91 

p-value 0.138 0.285 0.001 

Fraction of maximum moving distance over normal time 

coef 0.0036 0.0019 0.0056 

95%CI [0.0006,0.0066] [-0.0023,0.0061] [0.0043,0.0070] 

std.err 0.0015 0.0020 0.0007 

t-stat 2.44 0.94 8.67 

p-value 0.019 0.356 0 

Home-stay minutes   

coef 0.0003 0.0007 -0.0003 

95%CI [-0.0003,0.0008] [0.0003,0.0011] [-0.0005,-2e-05] 

std.err 0.0003 0.0002 0.0001 

t-stat 1.00 3.28 -2.24 

p-value 0.321 0.003 0.038 

Latitude    

coef -0.0259 -0.0514 0.0049 

95%CI [-0.0551,0.0032] [-0.0825,-0.0203] [-0.0179,0.0277] 

std.err 0.0144 0.0150 0.0109 

t-stat -1.80 -3.43 0.45 

p-value 0.080 0.002 0.657 

Longitude    

coef 0.0070 0.0110 0.0021 

95%CI [0.0019,0.0120] [0.0059,0.0161] [0.0003,0.0039] 

std.err 0.0025 0.0025 0.0009 

t-stat 2.79 4.45 2.50 

p-value 0.008 0.0002 0.022 

const    

coef 1.7601 2.2325 1.1882 

95%CI [1.1636,2.3566] [1.6514,2.8137] [1.1588,1.2177] 

std.err 0.2954 0.2802 0.0140 

t-stat 5.96 7.97 84.82 

p-value 0 0 0 
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