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Abstract

The asymptotic behavior of the distribution function of the Hilbert transform of
sequences from the class /; is studied. The concept of Q-summability of series is
introduced; using this notion, it is shown that the Hilbert transform of a sequence from
the class [ is Q-summable and is Q-sum is zero.
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1 Introduction

Let {b,},cz € 1. The sequence

is called the Hilbert transform of the sequence {b;},c7-
M. Riesz (see [18, see also 10, 15]) proved that if {b,},cz € I,, p > 1, then

{15,1},1e z € I, and the inequality

by

, = Cpllbull, ey
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holds. Weighted analogues of (1) are investigated in the works [7-9, 13, 14, 16, 17,
21].
If {b,},,c7z € [1, then the sequence {l;,,},,ez belong to the class (1) /,, but it does
p>1
not belong to the class /;. In this case, R. Hunt, B. Muckenhoupt and R. Wheeden (see

[14]) proved that the distribution function b(h) = » {ne 7. ‘ ; ‘> x} 1 of the Hilbert

transform of the sequence {b,},c satisfies the condition

vio> 0 [boo| = % > 1bal, by

nezZ

where Cy is an absolute constant. Note that for the sequence {b,},c7 € [ the series
Y nez bn does not converge even in the sense of the principal value, i.e., in the sense

h-m, T

nez In|<N

In the present paper, we study the asymptotic behavior of the distribution function
b()) of the Hilbert transform of a sequence {by},cz € /1 as . — 0 (Theorem 1). We
introduce the concept of Q-summability of series and, using this notion, prove that
the Hilbert transform of a sequence {b,},cz € /1 is O-summable and its Q-sum is
zero (Theorem 2).

2 Asymptotic Behavior of the Distribution Function of the Discrete
Hilbert Transform

Theorem 1 Let {by},cz € 1. Then

, 3

2. by

nezZ

lim A-b(L) =2
ALH(L ()

where b(L) = Z[%Z ’En‘>x} 1 is the distribution function of the Hilbert transform
Of {bn }n ez

We first prove the auxiliary lemma.

Lemma1 Let {b,},cz €1 and ), _, by, = 0. Then

neZ
5()»):0(%), A—>0+. 4

Proofof Lemma 1 We first assume that a sequence {b,},cz € [ is concentrated on
some finite interval [—m, m], that is, b, = O for |n| > m. For every |k| < m and
[n] > 2m, we have
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kI = Inl =kl > nl —m > ) — 2 =2 s L
- 2 2 2|1~ 27 2
Therefore, in this case, for |n| > 2m from the equality
~ by by bk
kTS =TT =TT 1/2 <
b 1 k—1/2
:Z _kk_ _1222”‘_ZT/_12)[7
IkISmn " / [k|<m |k|<m n n /
we obtain
. Ik —1/2] 4
5 ‘< S e Y A k — 1721l 5
= 2 a1 S e 2 e 12 ®)
|k|<m lk|l<m
Denote

Mo =" lk—1/2lbl.

lk|<m
Then it follows from (5) that
l;,, > A

4
{neZ: }C{neZ:|n|§2m}U{neZ\[—2m,2m]:—2M0>k}
n

={neZ: |nl <2m}uyU {n € Z\[-2m, 2m] : |n| < 2,/M0/A}.

Hence we have

b= Y. 1< 3 1+ > 1 <4m+4,/Mo/n+2,

{neZ: |13,,‘>A} {n€Z: |n|<2m} {nez\[~2m,2m): |n|<2/Mof %}

whence the asymptotic Eq. (4) follows.

Now let us consider the general case when a sequence {b,},c7 € /1 is concentrated
on Z. It follows from the condition {b,},cz € [ that, for any ¢ > 0, there exist a
number m, € N satisfying

Z|b|<—,

[n|>mg

where Cy is the constant from (2). Setting

1
> by, for |n| <mg > by = Z by, for |n| < m,

[k|<m |k|<mg

{0, for |n| > m, {bn, for |n| > m,
b =

2m +1 2mg+1



R. A. Aliev, A. F. Amrahova

we have
by, = b, +b],
the sequence {b;l }n <z € [ is concentrated on the finite interval [—m., m.],

1

/o /o
20= D b= ) g 2
nez |n|<mg [n|<m, |k|<m,
1
= > bn—2m£+l(2m8+1) > b=0;
|n|<mg |k|<m,

and the sequence {b,’{ } € [ satisfies the inequality

nezZ

1

Do lbl= 30l 2 = 3 el X g Xk

nezZ [n|>mg [n|<m [n|>mg [n|<me |k|<mg¢
= D0 Wbl D0 b= D bal+ D b= D0 b
|n|>mg lk|<mg n|>mg keZ |k|>mg
&
= D Ibal+] 3 =2 30 bl < o
|n|>mg |k|>mg |n|>mg 0 (6)

Since the sequence {b},} _., € I is concentrated on [—m,, m¢]and )", ., b, =0,

then for the sequence {b;}n <z € I1 Eq. (4) is satisfied, and therefore, there exists A
(¢) > O such that, for 0 < A < A(e),

(L) <& 7
(3)=5 7

where b'(A) = ) [ne 2 |7.|> A} 1. On the other hand, from (2) and (6) it follows that
~ A " €
)\b//<§> <2Cy Z |bn| < 5 8)
nezZ
for any A > 0, where b” (L) = Z{neZ' i M} 1.

Since 15n = 5’,, + b~”n for every n € Z, we have, for every A > 0,

{nez: | B, B!

>A}C{neZ:

>a/2fulnez:

=3/2). ©
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For any 0 < A < A(¢) from inequalities (7), (8) and inclusion (9) we get

b= Y 1= Y 1+ Y 1=PE/)+P0p <5

Bn B >x/2] [neZ: By >x/2]

{neZ:

= [nez:

This shows that equality (4) is valid for all {b,},cz € [; satisfying the condition
Y nez bn = 0. This completes the proof of Lemma 1.

Proof of Theorem 1 In the case ) ,., b, = O the assertion of the theorem follows
from Lemma 1. Let us consider the case ), ., b, = a # 0. Puttig

b, =

n

by, forn #0 b — 0, forn#0
by—a, forn=0" " |a, forn=0

we have b, = b}, + b, and ), _, b, = 0. It follows from Lemma 1 that
~ 1
b/()»):()(X), A—0+. (10)

Since b, = % forn # 0, b~”o = 0, we have

B'oy= Y. 1= > 1= > 1=2[|a/x

!

{neZ: B >A} {neZ\{0}: [a/n|>1} {(neZ\{0}: |n|<a/a}
(11)
where [|oc~/)L|] is the integer part of the number |o/A|.
Since b, = by, + D", foreveryn € Z, we have, forany 0 < ¢ < 1,
{neZ: l;n >A}C{neZ: l;’n >8)»}U{}’ZGZZ b~”n >(1—8)A}
{neZ: l;,, >A} D {neZ: b7’n >(1+8)A}\{neZ: Z;’,, >£k}.
Hence
by = Z 1< Z 1+ Z 1
{nez: by >x} {neZ: B, >£A} {nez: by >(1—a)k}

=b (M) +b" (1 —e)N),

b\ = Z 1> Z 1- Z 1

{neZ: by >)L} {neZ: 1;;,’ >(l+s)k} [neZ: 15,/1 >5)L}

=b"((1+e)r) — b (e)).
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Now, using (10), (11),

limsup A - b (1) < lim sup A - [5’ ) +5" (1 — &) x)]

A =0+ A—0+
. o 2|
= limsupA -2 = ,
A0+ (I—e)A 1—¢ (12)

liminf % - 5 (A) > liminf A - [5” (1 +e)2)— B (g,\)]
A =0+ A—>0+

—liminf -2 ||—2 _ 2ol
A—0+ (I+g)A l+¢ (13)

Since ¢ is arbitrary, it follows from (12), (13) that

11Am%)nfx -b(A) =limsup A - b(1) = 2|a|.
—0+

A—>0+

Hence (3) holds. This completes the proof of Theorem 1.

3 Q-Summability of Series and the Hilbert Transform

For a measurable complex function f on an interval [a, b] C R, we set

[f )], = [f)]" = f(x) for |[f(x)] <n,
[fO], =n-sgnf(x), [f()]"=0 for |[f(x)]>n, n€N,

where sgnz = z/|z| for z # 0 and sgn0 = 0.
In 1929, Titchmarsh [22] introduced the notions of Q- and Q’-integrals of a function
measurable on [a, b].

Definition 1 If the finite limit lim fab [f(x)],dx (lim fab [f (x)]"dx, respectively)
n—o0 n— oo

exists, then f is said to be Q-integrable (Q’-integrable, respectively) on [a, b]; that
is, f € Qla, b] (f € Q'[a, b]). The value of this limit is referred to as the Q-integral
(Q’-integral) of this function and is denoted by

b b
0 / Fdx | (Q) / Fx)dx

As in Definition 1, one defines the Q- and Q’-integrals for a function measurable
on the real axis R.
Given a measurable complex function f on the real axis R, we set

[f )]s, = [F)1* = f(x) for § < |f(x)| <2,
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[f ()]s = £ )1 =0 for |f(x)| <8,
[f )]s, = Asgnf(x), [f)** =0 for [f(x)|>1 0<8 <A

Definition 2 If the finite limit lim ¢, Jr Lf ()]s, 5dx
A — 400
(lim 5 — O+ fR [f (x)1%*dx, respectively) exists, then f is said to be Q-integrable
A — +00

(Q’-integrable, respectively) on R; thatis, f € Q(R) (f € Q'(R)). The value of this
limit is referred to as the Q-integral (Q’-integral) of this function and is denoted by

(Q)/f(X)dx (Q/)/f(X)dx
R R

A very uncomfortable fact impeding the application of Q-integrals and Q’-integrals
when dealing with diverse problems of function theory is the absence of the additivity
property; that is, the Q-integrability (Q’-integrability) of two functions does not imply
the Q-integrability (Q’-integrability) of their sum. If one adds the conditions

dm{ix e R: |f(x)| > 38} =0(), §— O+, (14)
Am{x € R: |f(x)] > A} =o0(1), A — +00, (15)

to the definition of Q-integrability (Q’-integrability) of a function f, then the
Q-integral and Q’-integral coincide (Q(R) = Q' (R)) and these integrals become
additive.

Definition3 If f € Q'(R) (or f € Q(R)) and conditions (14) and (15) holds,
then f is said to be A-integrable on R; thatis, f € A (R). In this case, the limit
lim 5 — O+ fR [f(x)]‘s’)‘dx (or the limit lim 5 — Ot fR [f(x)]s,,dx) is denoted

A — +00 A — +00
by

(A) / Jf(x)dx.
R

Properties of Q- and Q’-integrals were investigated in [2, 3, 6, 11, 12, 22]; for the
applications of A-, - and Q’-integrals in the theory of functions of real and complex
variables we refer the reader to [1-6, 19, 20, 22, 23].

We need the following theorem proved in [3] and [4].

Theorem A [4, Theorem 4] Let v be a finite complex measure on the real axis R. Then

(0 f (Hv)(x)dx =0,
R
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where (Hv)(x) = % f R % is the Hilbert transform of the measure v.

Definition 4 We denote by M (R; C) the class of measurable complex-valued func-
tions f on R for which the finite limits limy_ +so Amf{z € R: | f(z)| > A} and
lims— o+ dm{z € R : |f(2)| > &} exist.

Remark 1 Note that the Hilbert transform of a finite complex measure belong to the
class of functions M (R; C) (see [4]).

Theorem B [3, Theorem 2.3] If a function f € M(R; C) is Q’-integrable on R and a
function g is A-integrable on R, then their sum f + g € M(R; C) is Q’-integrable on
R, and

(Q/)/[f(x)+g(X)]dx = (Q/)/f(x)dX+(A)fg(X)dX-
R R R

Similar to the definition of the Q-integral, we define the Q-sum of series. Let
{an},cz be a sequence of complex numbers.

Definition 5 If the finite limit lim;_ o4 Z{neZ: lan|>1) Gn exists, then the series
Y nez an is said to be Q-summable, and the value of this limit is referred to as the
Q-sum of this series and is denoted by

Q) an.

nezZ

Q-summable series does not enjoy the additivity property; that is, the Q-summability
of two series does not imply the Q-summability of their sum. If one adds the condition

> 1:0(1), A — O+ (16)
} A

{(neZ:lay|>r

to the definition of Q-summability of a series )
additive.

Definition 6 If a series ) ,., a, is Q-summable and condition (16) holds, then the
series ), . ay is said to be A-summable, and the limit lim; o4 Z{nez lay|=3) Gn 18
denoted in this case by (4) >, _, an.

nez Gn, then the Q-sum become

nezZ

Theorem 2 Let {by},cz € 1. Then the series by, is Q-summable and the equa-

tion

nezZ

Q) by =0 (17)
nez

holds.

Proof of Theorem 2 Define the function f(x) to be 27b, forx € [n — 1/4, n+1/4],
n € Z and 0 elsewhere, the function F(x) tobe b, forx € [n — 1/2, n+1/2),n € Z
and
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G(x) = (Hf)(x) = F(x).

We first show that G1(x) € L{(R).
Forevery x € [n —1/2, n+1/2),x # n £ 1/4 we have

m+1/4
t 27 by, b,
Gx) = f( ) d _ bn _ Z / s m
T X — X — l n—m
R meZm 1/4 m;/:n
m+1/4 n+l/4
dt dt b
=13 26 / +2b, / — -
X —1 X —1 n—m
ME 14 n—1/4 m#n
m+1/4 n+l1/4
1 1 dt
= 2by - dt | +2b, —— =G1(x) + G (x).
X —1 n—m X —1
m#n 14 n—1/4

(18)

Let m # n. Then, forevery x € [n — 1/2, n+1/2)and t € [m — 1/4, m +1/4],
since

[x —n| <1/2, |m—t|<1/4, |x—t|z|n—m|—|x—n|—|m—t|zIn—m|—3/4

we get

1 1 ’7 In—x+t—m| _ 1/2+1/4 B 3
Clx—tl-ln—ml = ln—ml-(ln—m|—=3/4)  In—m|-@Gn—m|=3)
19)

X —t n—m

Therefore, for every x € [n — 1/2, n+1/2),

m+1/4
1
1G1D)] < ) 2lbul - dr<23|bm- Tl G =3)"
men m=1/4 me#n
(20)
From inequality (20) it follows that
n+l/2
1
Gi(x)ldx = Gi(x)ldx < 31by :
f| 1@)ldx = f G1)ldx <> > " 3lbyl - BT
R ”EZn—l/2 neZ m#n
2D

. . 1 1 .
Since for every m € Z the series ), L, it @ =3 = 2k#£0 TIER=T 1S
convergent, we have from (21)
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f|G1(x)|dx < 3lbm |Z (4|n—m| -3)

meZ

1 1
=32l ) G O A @k ’Ez'bm'

meZ k#0 k#0

and, therefore, G1(x) € L{(R).

Let us show that G2(x) € L{(R).

For every n € Z we subdivide the set [n — 1/2, n+1/2)\{n — 1/4; n + 1/4} into
fourparts: [n — 1/2, n —1/4), m — 1/4, n], (n, n+1/4), n+1/4, n+1/2).

Ifx e[n—1/2, n—1/4), then

n+l1/4
dt
Gr(x) = 2b, —[ =2by[—In(n+1/4 —x)+In(n — 1/4 — x)];
X —
n—1/4

For every x € R and § > 0, the equality

X+6 8

dt du

v.p. Tt = V.p. —_u =0
x—38 -4

holds. Therefore, if x € (n — 1/4, n], then

n+1/4 X+(x—n+1/4) n+l/4
dt t dt
Go(x) = 2b,v.p. — =2b,| v.p. +
X —1 x —1 x —1
n—1/4 x—(x—n+1/4) x+(x—n+1/4)

n+l/4

dt

= 2b, - =2by[~In(n+1/4 —x) +In(xr —n +1/4)]

x —

2x—n+1/4

if x € (n, n+1/4), then

n+l/4 x—(n+1/4—x) x+(n+1/4—x)
dt dt dt
Go(x) = 2b,v.p. — =2b, | v.p. +
x —t x —t x —t
n—1/4 n—1/4 x—(n+1/4—x)
2x—n—1/4
dt
= 2b, / ; =2by[—In(n+1/4 —x)+In(x —n+1/4)];

x —

n—1/4
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ifx € (m+1/4, n+1/2), then

n+l/4

G (x) = 2b, _dr = 2bu[—In(x —n — 1/4) +In(x —n + 1/4)].

n—1/4
This shows that for every x € [n — 1/2, n+1/2), x # n £ 1/4 we have
Go(x) =2by[—Inlx —n —1/4| +1In|x —n+ 1/4]] (22)

and, therefore,

1 1
|G2(x)| < |2by]|In +1n .
|x —n —1/4| |x —n+1/4]

Now, for every n € Z,

n+1/2
| 1G2wlax < pw)
n—1/2

_ n+1/2 1 1 o 1/2 1
where M; = fn_1/2 [ln oA +1n ‘x_n+l/4|]dx = f_1/2[lnm +
In |u+1/4‘]du Therefore,

n+l)2
| 16201 = 2/ 1Ga(0)ldx < 2M; Y Iy,
nez nez

It follows that G>(x) € L{(R), and hence G(x) € L{(R).

Now we prove that the series ), by is Q-summable and Eq. (17) holds.

Since F(x) = (Hf)(x) — G(x), Hf € M(R; C) (see: Remark 1) and G(x) € L
(R), it follows from Theorems A and B that the function F(x) is Q’-integrable on R,
and moreover,

(Q/)/F(x)dx = (Q/)/(Hf)(x)dx —/G(x)dx = —/G(x)dx (23)

R R R R

The function F(x) is bounded and by definition for every A > 0

M= U =172 n+1/2),
= A

n

(xeR: [F(x)| > = Uz{xe[n—l/z, n+1/2): b
ne
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hence
(Q’) / F(x)dx = lim f F(x)dx = lim / F(x)dx
A — 0+ A0+
R {xeR: A<|F(x)|<d} {xeR: |F(x)|>)}
5 — +00
n+1/2
= i bpdx = li by = by. 24
}»Ln(}+ Z f ndx )Lin(}+ Z " (Q) Z " ( )
{n: bn >A]n71/2 ’n: by >A} nez

It follows from (23) and (24) that the series Znez » 1S Q-summable and the
equation

@Y 5 =~ [ G (3)

neZ R

holds. For every n € Z it follows from (22) that

n+l1/2 n+l1/2 n+1/2
/ Gr(x)dx = 2b, | — / Injx —n — 1/4|dx + / In|x —n+1/4|dx
n—1/2 n—1/2 n—1/2
12 12
=2b,| — / Inlu — 1/4|du + / In|u + 1/4|du
—1,2 —1/2
172 12
= 2b, / Inju — 1/4|d(—u) + / In|u + 1/4|du
—1/2 —1,2
12 172
=2b,| — f In|—z — 1/4]dz + / Inju + 1/4|du | = 0.
—1,2 —1/2
Therefore,
n+l1/2
f Ga(x)dx =) f Ga(x)dx = 0. (26)
R neZy "1

By (19) for every m € Z and t € [m—1/4, m+1/4] the series
n+1/2 ]
n;ém f —1/2
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n+l/2
1 1
2 P L
Y — _
n#EMmy 10
L onHl)2 n+l/2
I mzl/ : 1d+’§§)/ : L x| @)
= lum — X — X |.
p—oo| 4 xX—t n—m X—t n—m
n=m=>p, 12 n=m+l, %

Since foreverym € Zand p € N

= 1+"§’:’ 1 1 L,
n—m n—m 2

—1
n=m-—p n =m+1 p p
1 1 1
+l1+-+---+ +—1=0,
2 p—1 p
it follows from (27) that
n+l/2
1 1
> ()
ll#lﬂn71/2 x—1 n—m
mey  M*1/2 mep  MH1/2 m—1/2 m+p+l/ 2
= 1lim [ > / 1dx+2 Ui | = tim Ly dx
T pooo| 4 x—t x—t T pooo x—t x—t
n=m=py o n=m+l, 1o n—p—1/2 m+l/2

plingo[ln(t—in+l/2)—ln(t—m+p+l/2)+ln(m+p+l/2—t)—ln(m+1/2—t)]

=In(t—m+1/2)—In(m+1/2—1).
Therefore, for every m € Z,
m+1/4 n+1/2 m+1/4

> /( LN >dx dt = / [ln(t —m +1/2) —In(m + 1/2 — ))dt

X —t n—m

m—1/4 | "FM 12 m—1/4
1/4 1/4 1/4
= / [In(u+1/2) —In(1/2 — u)]du = / In(u +1/2)du + / In(1/2 — u)d(—u)
—1/4 —1/4 —1/4
1/4 1/4
= / In(u +1/2)du — / In(1/2 +z)dz =0.
—1/4 —1/4

Now it follows from Fubini’s theorem that

n+1/2 n+l/2 m+1/4
1 1
Gi(x)dx = dx = 2b, - dt |d
Jawar=% [ awma=% [ | Lo | (x_t n_m) x
R n€Zy 12 nEZu 12 | M 14
m+1/4 n+l1/2

=" 2b, / > /(xl_f lm)dx dt| =o. (28)

n—
mez m=1/4 | "FM 172
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Now from Egs. (18), (25), (26) and (28) we finally obtain (17). This completes the

proof of theorem 2.
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