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Introduction 

This paper concerns the multiparameter spectral (MPS) theory, which is related to 

the attempt to solve boundary value problems by the method of separation of 

variables. We identify this MPS problem with a suitable "spectral investigation" on 

the operator system 

A(λ) = (A1(λ), … , An(λ)), 

where 

Aj(λ) = Aj − λ1Bj1 −  … − λnBjn. 

Let Aj(λ) be an operator acting in a Hilbert space Hj  and depending on 

"multidimensional" parameter λ = (λ1, … , λn) ∈ Cn. It will be assumed that Aj is an 

unbounded (in general) self-adjoint operator and Bjk  is a bounded self-adjoint 

operator for j, k ∈ {l, 2, . . . , n}. 

Let H be the Hilbert tensor product of the spaces H1, … , Hn .To each operator Aj and 

Bjk we associate the operator 

Aj
t = I1 ⨂ ⋯ ⨂Ij−1⨂Aj⨂Ij+1⨂ ⋯ ⨂In 

and Bjk
t  acting in H = H1⨂ ⋯ ⨂Hn, see [19]. The general method for studying the 
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system A(λ)  consists in constructing the corresponding operators 

Δ0,  Δ1, ⋯ , Δn which are the (well-defıned) determinants of the operator matrix 

(Bjk
t )

i,j=1

n
 and the matrices obtained from this matrix by replacing the j-th column by 

the column of operators A1
t , … , An

t . By definition we have 

 Δ0 = ∑ εσB1σ(1)

σ

⨂ ⋯ ⨂Bnσ(n), 

where σ = (σ(1), … , σ(n)) runs through all permutations of (l,2,...,n) and εσ is the 

signature of σ . We can also introduce the other tensor determinants  Δ1, … , Δn , 

defıned by analogy with  Δ0. We note that the operator  Δ0 is bounded in H and the 

operators  Δ1, … , Δn admit closures. 

We assume that  Δ0 is positive definite:  Δ0 ≫ 0, i.e. ( Δ0x, x) ≥ α(x, x) for some 

α > 0 and for the arbitrary x ∈ H. 

The separating system of operators   ∆0
−1Δ1, … , ∆0

−1Δn  is the family associated 

with the multiparameter system A(λ). Certain important problems in the MPS theory 

have a complete solution just because they can be expressed in terms of this family 

of operators. 

The precise definitions along with various properties and the interconnection 

between the original MPS problems and the corresponding problems for the 

separating system of operators can be found in [3], [4], [22], [15], [16], [13]. 

The spectrum of a multiparameter system A(λ) is defined to be the set σ[A(∙)] of all 

λ ∈ Cn such that each of the operators A(λ) is not invertible, see [11]. The point 

spectrum of A(λ) is the set of λ ∈ Cnsuch that each operator Aj(λ) has a nonzero 

kernel. Let us note the following important properties of self-adjoint MPS systems 

which are well known from the standard multiparameter theory, see [8], [23], [22], 

[12], [14]. The separating system of operators Γj = ∆0
−1Δj, j = 1,2, . . . , n consists of 

essentially self-adjoint operators (i.e., the closure Γ̅j is self-adjoint, see [6]) in the 

space 〈H〉, which is the Hilbert tensor product H1⨂ ⋯ ⨂Hn with the "weight" inner 

product 〈x, y〉  =  (∆0x, y). The operators Γ̅1, … , Γ̅n  are pairwise commuting in the 

sense that their spectral measures EΓ̅1
, … , EΓ̅𝑛

 commute. Let E∆ denote the standard 

spectral measure EΓ̅1
⨂ ⋯ ⨂EΓ̅n

 of the strongly commuting family of self-adjoint 

operators Γ̅1, … , Γ̅n. Further, we have 
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Here the left hand side is the spectrum of the MPS system A(λ) and the right hand 

side is the joint spectrum of the strongly commuting separating system of self-adjoint 

operators. 

Then it is natural to call joint spectral measure E∆ of the separating system Γ1̅, … , Γn̅ 

the spectral measure of the self-adioint MPS problem for the system of 

operators  A(λ). 

This paper deals with the geometrical and analytical structure of the spectrum 

σ[A(∙)]  and the construction of the spectral measures of the self-adjoint MPS 

problem beginning with the corresponding measures of the original self-adjoint 

operators Aj(λ), λ ∈ Rn. Further, in addition the operators  A1, ⋯ , An are assumed 

to have compact resolvents except one. From the point of view of applications in 

mathematical physics these requirements can be regarded as natural (one radial and 

several angular variables arise by applying the method of separation of variables.) 

In the 1950th years H.O. Cordes published a series of papers on the method of 

separation of variables studied in the Hilbert space. See [9], [10], also [18]. The 

solution of the problem for some two-parameter operator systems can be deduced 

from these works by Cordes (n = 2, A =  A1
∗  is arbitrary and A2 =  A2

∗  has a discrete 

spectrum, B11 + B12 = I, −B21 + B22 = I,  B11 > 0, B12 ≥ 0,  B21 ≤ 0,  B22 ≥ 0,  

 ∆0≥ 0 - consequently, the operators Bj1 and Bj2 commute). 

For the three-parameter case see [1] and for some general discussion see [2]. We 

essentially use the Bishop's ideas (see [7]) concerning the structure of the roots of 

analytic functions of several complex variables with values in Banach space and 

some arguments of the geometric theory of functions of several complex variables. 

To construct a spectral measure in a general 𝑛-parameter problem we essentially use 

the Cordes method for the two-parameter case. 
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§1. Representation of Initial Multiparameter Operators in  

Terms of a Separating System 

 

Let Bjk  be self-adjoint bounded operators and Aj  be a self-adjoint unbounded 

operator in a Hilbert space Hj, j, k ∈ { 1,2, . . . , n }, and H = H1⨂ ⋯ ⨂Hn. Further, 

we denote 

∆0= det(Bjk
t ) = |

B11 ⋯ B1n

⋯ ⋯ ⋯
Bn1 ⋯ Bnn

| (1) 

and let ∆j be a tensor determinant operator in H which can be defıned in the usual 

way, namely by replacing the j -th column of ∆0  by the column of operators 

A1, . . . , An. For example, if n = 2, we have 

∆0= B11⨂B22−B12⨂B21,  ∆1= A1⨂B22−B12⨂A2, 

 and    ∆2= B11⨂A2 − A1⨂B21  

By defınition, we set 

 

 

 

Γj = ∆0
−1Δj  j = 1,2, . . . , n are essentialy self-adjoint operators (see, [8], [23], [12-

16]) in a new Hilbert space 〈H〉 with an inner product 

〈∙,∙〉 = (∙, ∆0 ∙). 

Let us introduce the operators 

Bjk(ν) = ∑ Bjmfmk(ν)

n

m=1

, j, k = 1,2, … , n (2) 

depending upon the variable ν, that is, 

(Bjk(ν))
nxn

= (Bjk)
nxn

(fjk(ν))
nxn

, 
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where fjk(ν) are some scalar functions to be determined later. Now we introduce 

Γj(λ, ν) = ∑(Γk̅ − λk)

n

k=1

gjk(ν),   j = 1,2, … , n. 

where gjk(ν) is a cofactor of the element fjk(ν) of the matrix (fjk)
nxn

. Then 

|
A1(λ) B12(ν) ⋯ B1n(ν)

⋯ ⋯ ⋯ ⋯
An(λ) Bn2(ν) ⋯ Bnn(ν)

| = ∆1g11 + ∆2g12 + ⋯ + ∆ng1n − 

−∆0(λ1g11 + λ2g12 + ⋯ + λng1n) = (∆1 − λ1∆0)g11 + ⋯ + (∆n − λn∆0)g1n 

and hence 

Γ1(λ, ν)x = ∆0
−1 |

A1(λ) B12(ν) ⋯ B1n(ν)
⋯ ⋯ ⋯ ⋯

An(λ) Bn2(ν) ⋯ Bnn(ν)
| x. (31) 

In a similar manner we have 

Γn(λ, ν)x = ∆0
−1 |

B11(ν) ⋯ B1,n−1(ν) A1(λ)
⋯ ⋯ ⋯ ⋯

Bn1(ν) ⋯ Bn,n−1(ν) An(λ)
| x, (3n) 

 

and accordingly (3j) for x ∈ D(A1)⨂ … ⨂D(An). Now multiplying (3j) by 

B1j
t (ν) = B1j(ν)⨂I2⨂ … ⨂In and summing up, we obtain 

∑ B1j

m

j=1

(ν)Γj(λ, ν)x = {B1j
t (ν) ∆0

−1 |
B22(ν) ⋯ B2n(ν)

⋯ ⋯ ⋯
Bn2(ν) ⋯ Bnn(ν)

| − 

B12
t (∙) ∆0

−1 |
B21(ν) B23(ν) ⋯ B2n(ν)

⋯ ⋯ ⋯ ⋯
Bn1(ν) Bn3(ν) ⋯ Bnn(ν)

| + ⋯ + 

+(−1)n−1 B1n
t (ν) ∆0

−1 |
B21(ν) ⋯ B2,n−1(ν)

⋯ ⋯ ⋯
Bn1(ν) ⋯ Bn,n−1(ν)

|} A1
t (λ) x + 
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+ {−B11
t (ν)∆0

−1 |

B12(ν) ⋯ B1n(ν)

B32(ν) ⋯ B3n(ν)
⋯

Bn2(ν)
⋯
⋯

⋯
Bnn(ν)

| + B12
t (ν) ∆0

−1 ∙ 

∙ |

B11(ν) B13(ν) ⋯ B1n(ν)

B21(ν) B33(ν) ⋯ B2n(ν)
⋯

Bn1(ν)
⋯

Bn3(ν)
⋯ ⋯          

⋯ Bnn(ν)

| + ⋯ + 

+(−1)n B1n
t (ν) ∆0

−1 |

B11(ν) ⋯ B1,n−1(ν)

B31(ν) ⋯ B3,n−1(ν)
⋯

Bn1(ν)
⋯
⋯

⋯
Bn,n−1(ν)

|} A2
t (ν) x + ⋯ + 

+ {B11
t (ν) ∆0

−1 |
B12(ν) ⋯ B1n(ν)

⋯ ⋯ ⋯
Bn−1,2(ν) ⋯ Bn−1,n(ν)

| − ⋯ + 

+(−1)n−1 B1n
t (ν) ∆0

−1 |
B11(ν) ⋯ B1,n−1(ν)

⋯ ⋯ ⋯
Bn−1,1(ν) ⋯ Bn−1,n−1(ν)

|} An
t (λ) x. (4) 

Let us assume that 

det (fjk
 (ν))

nxn
= 1. 

It is easy to show that 

∆0
 = |

B11(ν) ⋯ B1n(ν)
⋯ ⋯ ⋯

Bn1(ν) ⋯ Bnn(ν)
| . 

Then the expression in the first bracket on the right hand side of (4) equals to 1 and 

the others equal to 0. Thus, by analogy, for the other sums 

∑ Bkj
t

 

j

(ν)Γj(λ, ν) 

we obtain the relations  
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Ak
t (λ)x = ∑ Bkm

t

n

m=1

(ν)Γm(λ, ν)x,     k = 1,2, … , n (5)1 

for  

 

In particular, if  λ = (0, … ,0) and f11(ν) = … = fnn(ν) = 1, fjk(ν) = 0, for j ≠ 𝑘, 

we obtain 

Aj
tx = ∑ Bjk

t

n

k=1

Γk̅x,    
. 

 
(5)2 

According to the MPS theory of self-adjoint operators (see [8], [23], [12], [14]), we 

have 

⋂ D (Γj(λ, ν))

n

j=1

= ⋂ D (Aj
t(λ)) ,       λ ∈ Rn,

n

j=1

 

(let us recall that the operator Aj
t(ν) is closed by defınition). 

Let x ∈ ⋂ D(Γj̅)
n
j=1 . Then there exists the sequence  

 

Indeed, D(Aj
t) = D(|Aj

t|), that is why, the operator  |A1
t | + ⋯ + |An

t | is determined 

in D(A1
t ) ∩ … ∩ D(An

t ). If  xn → x   and  

(|A1
t | + … + |An

t |)xn → (|A1
t | + … + |An

t |)x, then we have 

0 ← ‖(|A1
t | + … + |An

t |)(xn − x)‖2 = ‖(A1
t )(xn − x)‖2 + 

+‖(|A2
t | + … + |An

t |)(xn − x)‖2 + 2(|A1
t |(xn − x), (|A2

t | + … + |An
t |)(xn − x)). 

The family of the operators |Aj
t| , j = 1, 2, . . . , n is commutative, so the last term of 

this sum is a non-negative number. Hence 

|A1
t |(xn − x) → 0. 

and then  

A1
t (xn − x) → 0. 
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Thus, Aj
txn → Aj

tx,  j = l, 2, . . . , n. 

Taking Aj
t(λ) instead of Aj

t we obtain the same proof for Aj
t(λ), j = l, 2, . . . , n and  

λ ∈ Rn. 

Further, from Aj
t(λ)xn → Aj

t(λ)x  it follows that 

Δj(λ, ν)xn → Δj̅(λ, ν)x , j = l, 2, . . . , n 

where Δj(λ, ν)  is obtained from Δj  by replacing Aj  by Aj(λ)  and Bjk  by Bjk(ν) . 

Taking into account that ∆0
−1 is a bounded operator we obtain 

Γj(λ, ν)xn → Γj̇(λ, ν)̅̅ ̅̅ ̅̅ ̅̅ ̅x,   j = l, 2, . . . , n. 

Thus, 

Aj
t(λ)x = ∑ Bjk

t (ν)Γk(λ, ν)̅̅ ̅̅ ̅̅ ̅̅ ̅
n

k=1

x 

for each element 

x ∈ ⋂ D (Aj
t(λ))

j

= ⋂ D(Aj
t).

j

 

This proves the following proposition: 

Lemma. 1 Let Aj  and Bjk  be self-adjoint operators with ∆0≫ 0 and Bjk(ν) =

∑ Bjmfjk(ν)m ,   j, k = 1,2, . . . , n, where fjk(ν) are some scalar functions such that 

det (fjk(ν))
nxn

= 1. 

Then the following relation 

Aj
t(λ)x = ∑ Bjk

t (ν)Γk(λ, ν)̅̅ ̅̅ ̅̅ ̅̅ ̅
 

k

x, j = 1,2, . . . , n 
(5) 

holds for each  

x ∈ ⋂ D(Aj
t)

n

j=1

. 
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§2. n-1 Discrete Problems Structure with n- Parameters 

 

Let A1, A2, … , An−1 be operators with a discrete spectrum (that is, their resolvents 

are compact operators) and the following conditions be satisfıed: 

δjk ∙  Bjk ≫ 0, j = 1,2, … , n − 1, k = 1,2, … , n for some δjk = ±1, (6) 

εk |

B11 ⋯ B1,k−1 B1,k+1 ⋯ B1,n

⋯ ⋯ ⋯ ⋯ ⋯ ⋯
Bn−1,1 ⋯ Bn−1,k−1 Bn−1,k+1 ⋯ Bn−1,n

| ≫ 0 (7) 

for some set of sign factors εk = ±1. 

We note at once that the formulas (6) and (7) do not impose essential restrictions 

on the operators Bjk in the sense of following propositions: 

Lemma 2. If ∆0≫ 0, then the operators Bjk can be replaced by their non-degenerate 

linear combinations such that these new operators satisfy the conditions (6) and (7). 

Proof: Let x0
n ∈ Hn, such that (Bnnx0

n, x0
n) ≠ 0. Then 

|

B11 ⋯ B1n

⋮ ⋮ ⋮
Bn−1,1 ⋯ Bn−1,n

(Bn1x0
n, x0

n) ⋯ (Bnnx0
n, x0

n)

| = 

= (Bnnx0
n, x0

n) ∙ det (Bjk −
(Bnkx0

n, x0
n)Bjn

(Bnnx0
n, x0

n)
)

(n−1)x(n−1)

. 

Assume that (Bnnx0
n, x0

n) > 0 for the sake of simplicity. Then Bjk can be replaced 

by  Bjk
, , where 

Bjk
, = Bjk −

(Bnkx0
n, x0

n)

(Bnnx0
n, x0

n)
Bjn,     Bjn

, = Bjn,    j = 1,2, … , n,   k = 1,2, … , n − 1 

and we have 

⨂det(Bjk
, )

j,k=1

n
≫ 0 

For every set of sign factors εr  =  ±1,   r =  1, 2 , . . . , n − 1 , there is a non-zero 
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vector  ∝ (ε) ∈ Rn−1 such that 

εr ∑ ∝s (ε)Brs
,

n−1

s=1

≫ 0,    ε = (ε1, … , εn). 

see [5]. 

We set 

Bj1
,, = ∑ ∝s (I)Bjs

, ,    I = (1,1, … ,1)

n−1

s=1

 

Bjk
,, = Bjk

, + ℓBj1
, ,    j = 1,2, … , n;   k = 1,2, … , n − 1, 

where ℓ is a large enough number. Taking  

Bjn
,, + c ∑ Bjk

,,

n−1

k=1

 

instead Bjk
, , where c is a large enough number, we get the formulas (6) and (7). 

This proves lemma 2. 

Now, let us consider following two-parameter operator 

A(λ1, λ2) = A − λ1B1 − λ2B2, 

where A is an arbitrary self-adjoint operator with a discrete spectrum and B1, B2 

are self-adjoint bounded operators, moreover, 

B1 ≫ 0,     B2 ≫ 0.  

Lemma 3. The real spectrum of the operator A(λ1, λ2) consists of eigenvalues only 

and we have 

σ[A(∙)] ∩ R2 = σp[A(∙)] ∩ R2 = ⋃ γn,

∞

n=1

 

where γn is the analytic curve in R2. Moreover, the points of intersection of these 

curves do not accumulate in the finite part of R2 and if γn = {λ : λ2 = φn(λ1)}, then 

we have 
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dφn

dλ1

(λ1
0, λ2

0) = −
(B1u, u)

(B2u, u)
, 

for an arbitrary  u=Ker (A(λ1
0, λ2

0))
 
, provided (λ1

0, λ2
0) ∉ γn ∩ γn,

 , (n ≠ n,).  

Proof.  It is clear that if (λ1
0, λ2

0) ∈ σ ∩ R2, then (λ1
0, λ2

0) ∈ σ[B2
−1A(∙)]. Since the 

operator B2
−1A has a discrete spectrum, the same is true for the operator B2

−1A −

λ2
0 According to the well-known theorem of the perturbation theory (see [17], 

theorem VII. 1.8 and II. 1.10) the spectrum in some neighbourhood of the point 

(λ1
0, λ2

0) consists of the analytic curves γk
, , k = 1,2, . . , m, passing through (λ1

0, λ2
0) 

and for every curve γk
,
 we have the Rellich's formula (see [20]) 

dφk

dλ1
|
(λ1

0,λ2
0)

= −(B2
−1B1u, u)B2

(B1u, u)

(B2u, u)
 . 

(8) 

where u=Ker[B2
−1A(λ1

0, λ2
0)] and (x, y)B2

= (x, B2y). 

Since B2
−1B1 is a strongly positive operator on HB2

, we have 

a ≤
dφk

dλ1
≤ b, 

where a and b are some negative numbers. 

Then each of the functions φk is continued along the whole R analytically. Indeed, 

if 

γ, = {λ: λ2 = φk(λ1)}, 

and λ1
, = ∂(pr0λ1

 γ,) is a boundary point of projection of the curve γ, on the axis λ1, 

then the function φ is continued through λ1
,
 into some of its neighbourhood, because 

all spectrum points in some neighbourhood of (λ1
0, λ2

0) ∈ ∂γ,
  consist of a fınite 

number of analytic curves and it is clear that one of them is a continuation of φ. 

Similarly, if 

μ1 = Sup λ1,   μ1
, = Inf λ1, 

where Sup  and Inf  are taken with respect to the set of those λ,  in which φk  is 
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continued, then φk is continued through μ1 into some of its neighbourhood. Thus, 

we have μ1 = ∞, μ1 = −∞, and lemma 3 is proved. 

Theorem 1. The set σ[A1(λ)] ∩ Rn consists of at most countable number of the 

analytic surfaces 

𝓅m = {λ: λn = φm(λ1, . . . , λn−1)} 

(φm is the analytic function in Rn−1). Only a fınite number of surfaces can pass 

through each point λ ∈ Rn. 

Proof. It is known that σ[A1(λ)] is the complex analytic set (see [7]). Assume that 

λ0 ∈ σ[A1(λ)] ∩ Rn. There exist non-zero functions Fm(λ1, λ2, . . . , λn),  

m = 1,2, . . . , r,  holomorphic in some complex neighbourhood U  of the point λ0 

such that common zeros of these functions coincide with 

σ[A1(λ)] ∩ U, m = 1,2, . . . , r.  

First of all, let us consider a zero-set (the set of all roots) of the function F1. We 

denote λ̂ = (λ1, . . . , λn−1) Suppose that F1(λ̂0, λn) ≠ 0 (this condition can always 

be obtained by the linear substitution of the variables). Then by the Weierstrass 

theorem (see [21], §8, VI) in some neighbourhood of λ0  (without loss of the 

generality in U) the function F1 can be represented in the form: 

F1(λ) = {(λn − λn
0)k + C1(λ̂)(λn − λn

0)k−1+. . . +Ck(λ̂)}φ0(λ). 

where Cm are holomorphic in Û = {(λ1, . . . , λn−1): (λ1, . . . , λn) ∈ U}, Cm(λ̂0) = 0 

and φ0(λ) ≠ 0 for λ ∈ U. 

Thus, zeros of F1are given by the equation  

P(λ) = (λn − λn
0)k + C1(λ̂)(λn − λn

0)k−1+. . . +Ck(λ̂) = 0. 

This equation has k number of roots with respect to λn: 

λn
(N)

= gN
1 (λ̂), N =  1,2, . . . , k 

where the function gN
1  are locally holomorphic in Û everywhere except the set 𝒜1, in 
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which the equation has at least one multiple root. Indeed, we have 
∂P

∂λn
≠ 0 for the 

λ̂ ∈ Û\𝒜1   and it is sufficient to apply the implicit function theorem. In a similar 

manner zeros of each function Fm are given by the locally holomorphic functions 

gN
m of the type gn

1. 

Assume that (μ1, μ2, . . . , μn−1) ∈ σ[A1(λ)] ∩ Rn and 

(μ1, μ2, . . . , μn−1) ∈ Û\ ⋃ (𝒜m),

r

m=1

 

where 𝒜m the analytic set, where the function gN
m may be of non-holomorphic 

character. 

Then there exists some neighbourhood Û(μ1, μ2, . . . , μn−1) such that all the 

functions gn
k are holomorphic. 

Denote 

𝓅N,k
, = {λ: λ̂ ∈ Û(μ1, μ2, . . . , μn−1), λn = gN

k (λ1, . . . , λn−1)}. 

Then the part of the set σ[A1(λ)] ∩ Rn which is in the neighbourhood Uμ can be 

represented as a union of all the possible intersections 

(𝓅N,k
, ∩. . .∩ 𝓅N,k

, ) ∩ Uμ ∩ Rn. 

We shall prove that 

σ[A1(λ)] ∩ Rn ∩ Uμ = ⋃(𝓅nk,1
, ∩ Rn),

 

nk

 (9) 

that is, the union of some surfaces (which corresponds to zeros of the only function 

F1) coincides with the spectrum in the neighbourhood Uμ ∩ Rn. 

To prove it, let us consider the simple case. 

Let the number of analytic functions Fj be equal to 2 and let each of the function 

Fj, j = 1,2 have two corresponding different surfaces in Rn, namely 𝓅1 and 𝓅2  for 

F1, also Q1  and Q2  for F2 . Then (9) means that the set σ[A1(λ)] ∩ Rn ∩ Uμ 
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coincides with one of 𝓅1 , 𝓅2 or 𝓅1 ∪  𝓅2 . Indeed, let 𝓅j  and Qj  be determined 

correspondingly in terms of the functions 

λn = Pj(λ1, λ2, . . . , λn−1) and λn = qj(λ1, . . . , λn−1). 

Let us investigate three cases: 

1o. If 𝓅j ≠  Qk  for all j, k = 1, 2,   then 

σ[A1(λ)] ∩ Rn ∩ Uμ = ⋃(𝓅j ∩ Qk )

j,k

. 

It is clear that 𝓅j ∩  Qk  is a curve in Rn. So, spectrum consists of curves only. 

We recall that the curve γ ⊂ Rn satisfies the following condition: 

in the neighbourhood of each point (λ1, . . . , λn−1) ∈ Rn−1  there is a point 

(ξ1, . . . , ξn−1) such that (ξ1, . . . , ξn−1, ξn) ∉ γ for al1 ξn ∈ R . 

Let us prove that the point ξ ∈ σ[A1(λ)] ∩ Rn ∩ Uμ  does not satisfy the last 

condition. First we consider the following two-parameter operator with respect to 

λn−1, λn. 

A1(λn−1, λn) = (A1 − ξ1
0B11−. . . − ξn−2

0 B1n−2) − λn−1B1n−1 − λnB1n. 

Then (ξn−1
0 , ξn

0) belongs to the last operator spectrum. According to Lemma 3 some 

analytic curve λn = φ(λn−1)passing through (ξn−1
0 , ξn

0) also helongs to this one and 

the equation 

dλn

dλn−1
|

(λn−1
 ,λn

 )

= −
(B1,n−1u1, u1)

(B1,nu1, u1)
 

holds, where u1 ∈ Ker(A1 − ξ1
0B11−. . . − ξn−2

0 B1,n−2 − λn−1B1,n−1 − λnB1n).  

Assume that (λ1
1, . . , λn−1

1 ) ∈ Û
′
, where Û

′
 is a small enough neighbourhood of the 

point (ξ1
0, . . . , ξn−1

0 ). 

Denote ∏ = {λ: λn−1
 = λn−1

0 },  γ2 = {λ: λ1
 = ξ1

0, . . . , λn−2
 = ξn−2

0 , 
 λn

 = φ(λn−1
 )} 

and ∏∩ γ2 = λ′′ = (ξ1
0, . . . , ξn−2

0 , λn−1
1 , φ(λn−1

1 )). 
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Assume that our proposition holds for n − 1  parameters. Let (μ1
0, . . . , μn−1

0 ) ∈

σ[A1
1 − λ1

 B11
1 −. . . − λn−1

 B1,n−1
1 ] ∩ Rn−1,  where A1

1  is self-adjoint and Bjk
1  are 

bounded, self-adjoint strongly positive or negative operators. For each point 

(η1, . . . , ηn−2)  from a small enough neighbourhood of (μ1
0, . . . μn−2

0 )  there exists 

ην−1 ∈ R such that 

(η1, . . . , ηn−1) ∈ σ[A1
1 − λ1

 B11
1 −. . . − λn−1

 B1,n−1
1 ] ∩ Rn−1. 

We can apply this argument for the operator 

(A1 −  λn−1
1 B1,n−1

1 ) − λ1
 B11

1 −. . . − λn−2
 B1,n−2

1 − λn
 B1n

1 . 

If (ξ1
0, . . . , ξn−2

0 , φ(λn−1
1 )) belongs to the last operator-functions spectrum, then it 

follows that for the point (λ1
1, . . . , λn−2

1 ) there exists λn
1 ∈ R such that 

(λ1
1, . . . , λn−1

1 , λn
1 ) ∈ σ[A1

1 − λ1
 B11

1 −. . . − λn−2
 B1,n−2

1 −  λn−1
1 B1,n−1

1 − λn
 B1,n

1 ] 

or 

(λ1
1, . . . , λn−2

1 , λn−1
1 , λn

1 ) ∈ σ[A1
1(λ)]. 

2°. 𝓅1 = Q1  and 𝓅2 ≠ Q2   

If 𝓅2 ∩ Q2 ⊄ 𝓅1 , then by repeating the previous arguments we shall have a 

contradiction. 

3°. 𝓅1 = Q1  and 𝓅2 = Q2  then we obtain 

σ[A1
 (λ)] ∩ Uμ = 𝓅1 ∪ 𝓅2. 

Thus, σ[A1
 (λ)] ∩ Uμ consists of some surfaces 𝓅1

1 ∪. . .∪ 𝓅ℓ
1 where we denote 𝓅𝑘

1 =

𝓅𝑁𝑘,1
1 , 𝑘 = 1, . . . , ℓ,  for simplicity. 

For each surface 𝓅𝑘
1 there exists some analytic function gk

  such that we have 𝜆n
 =

gk
 (𝜆1

 , . . . , 𝜆n−1
 )   for the points 𝜆 ∈ 𝓅𝑘

1 . Let us prove that gk
  has the analytic 

continuation on all Rn−1. 

If λ(1) ∈ ∂𝓅k
1\A1

  (let us recall that the analytic set is closed and does not divide any 

domain), then λ(1) ∈ σ[A1
1(λ)] (as the spectrum is closed). By repeating the previous 
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arguments for λ(1)  we obtain that in some its neighbourhood all points of the 

spectrum belong to some analytic surfaces Qm
1 , m = 1,2, . . . , ℓ1. Each surface Qm

1  is 

given by the equation λn
 = q

m
 (λ1

 , . . . , λn−1
 ) where q

m
  is an analytic functiön. 

Let Pr
 (λ1

 , . . . , λn−1
 )Pk

1 denote the projection of 𝓅k
1 on the hyperplane (λ1

 , . . . , λn−1
 ). 

It is clear that (Pr
 (λ1

 , . . . , λn−1
 )𝓅k

1) ∩ Û1  is an open set. If g
k
 (λ1

 , . . . , λn−1
 ) ≠

q
m
 (λ1

 , . . . , λn−1
 )  for all m = 1,2, . . . , ℓ1  and (λ1

 , . . . , λn−1
 ) ∈

(Pr
 (λ1

 , . . . , λn−1
 )𝓅k

1) ∩ Û1  then the whole set 𝓅k
1 ∩ U1  cannot be covered by the 

union  ⋃ (𝓅k
1∩Qm

1 )k,m  (see the above mentioned arguments). So we have 

g
k
 (λ1

 , . . . , λn−1
 ) = q

m
 (λ1

 , . . . , λn−1
 )  for some m and for all (λ1

 , . . . , λn−1
 ) ∈

[Pr
 (λ1

 , . . . , λn−1
 )𝓅k

1] ∩ Û1. 

Then the function gk
  is analytically continued through the points λ(1) ∈ ∂𝓅k

  

(according to the definition of the analytic continuation). 

Assume that (λ1
1, … , λn−1

1 ) ∈ Û1\A1
  By defınition of the analytic set there exists the 

curve λ̂ 
(1)λ̂ 

′ ⊂ Û \A1
  and if λ̂ 

(2) = (λ̂ 
(1)λ̂ 

1) ∩ ∂[Pr
 (λ1

 , . . . , λn−1
 )(𝓅k

1 ∩ Qm
1 )] then 

there exists λ̂ 
(2) ∈ ∂(𝓅k

1 ∩ Qm
1 ) such that λ̂ 

(2) = (λ̂ 
(2)λ̂n

2) see [21]. 

Thus, the fiınction gk
  is continued through λ̂ 

(2) in a similar manner. Let M be the 

set of those points of λ̂ 
(1)λ̂ 

1, on which the fiınction gk
  is continued in this way. 

It is easy to see that M is at the same time closed and open, that is, M=λ̂ 
(1)λ̂ 

1. Indeed, 

the spectrum is closed and the function is continued from the neighbourhood into the 

neighbourhood. 

Thus, gk
  is continued into the whole Û \𝒜1

  analytically. 

According to the well-known theorem of the theory of several complex variables 

(see [21], theorem 3, §10) if the function is holomorphic in some domain, except 

some analytic set of the co-dimension one and locally bounded in 𝒜1
 , then it is 

continued holomorphically onto the whole domain. 

Thus, gk
  is holomorphic in Û. Let us consider the restriction of  gk

  on Rn−1. For 

each point of the boundary of the domain by repeating the previous arguments 

similarly to Lemma 3, it is easy to establish that gk
  is continued holomorphically 
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onto Rn−1 

Now let us prove that the number of surfaces is at most countable. In fact, for each 

surface 𝓅 there exists the point λ such that only the fınite number of surfaces passes 

through it. 

Let r1
 , r2

 , . . . , rn+1
  be rational numbers such that 

|(r1
 , . . . , rn+1

 ) − λ| < rn+1
  

and, moreover, such that the other surfaces of σ[A1
 (λ)] do not pass through the 

neighbourhood 

|λ − (r1
 , . . . , rn+1

 )| < rn+1
 . 

Thus, we get the one-to-one correspondence 

{𝓅1
 , . . . , 𝓅k

 } → (r1
 , . . . , rn+1

 ). 

It means that the number of the surfaces is at most countable. 

Theorem 1 is proved. 

Theorem 2. The set σ[A1
 (λ)] ∩. . .∩ σ[An−1

 (λ)] ∩ R𝑛 consists of at most countable 

number of the curves 𝛾𝑚 with the following properties: 

1) 𝛾𝑚 = {λ: λk = φm
(k)(λ1)}, where φm

(k)
 is the analytic function. 

2) These curves intersect at most countable number of the points and the 

intersection points do not accumulate in the finite part of R𝑛. 

Proof. Let 𝓅𝟏
 , . . . , 𝓅n−1

  spectrum-surfaces of the first, second, ..., and (n − l) -th 

problems, correspondingly 

𝓅𝑗
 = {λ: λn = p𝑗

 (λ1
 , . . . , λn−1

 )}; j = 1,2, . . . , n − 1, 

and we denote 

Φ𝑗
 (λ1

 , . . . , λn−1
 ) = λn − p𝑗

 (λ1
 , . . . , λn−1

 ); j = 1,2, . . . , n − 1.  

Let J be the Jacobian of this system is 
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J =
|

|

∂Φ1
 

∂λ2
 ⋯

∂Φ1
 

∂λn
 

⋮ ⋮ ⋮
∂Φ𝑛−1

 

∂λ2
 ⋯

∂Φ𝑛−1
 

∂λn
 

|

|
  . 

If λ1
 = λ1

0, . . . , λn−2
 = λn−2

0  , then 𝜑(λn−1
 ) − p1(λ1

0, . . . , λn−2
0 , λn−1

 ) ≡ 0 for some 

function λn−1
 = 𝜑(λn−1

 ). 

Then 

∂Φ1
 

∂λn−1
 =

∂φ 
 

∂λn−1
 = −

(B1,n−1u1, u1)

(B1,n−1u1, u1)
, 

where u1 ∈ KerA1(λ), u1 ≠ 0 (see lemma 3). 

For the other functions pj
  and the points λj

  we have 

J =
|

|

(B12u1, u1)

(B1,nu1, u1)
⋯

(B1,n−1u1, u1)

(B1,nu1, u1)
1

⋮ ⋮ ⋮ ⋮
(Bn−1,2un−1, un−1)

(Bn−1,nun−1, un−1)
⋯

(Bn−1,n−1un−1, un−1)

(Bn−1,nun−1, un−1)
1

|

|
= 

= ∏(Bknuk, uk) ∙

n−1

k=1

det ((Bjℓuj, uj)) , for all   j = 1,2, . . . , n − 1, ℓ = 2,3, . . . , n. 

According to the formulas (6) and (7) we obtain that J ≠ 0. 

Then in each small enough neighbourhood of the intersection point 𝓅1
 , . . . , 𝓅n−1

  

the system of the equations 

{Φj
 = 0, j = 1,2, . . . , 𝑛 − 1} 

has the unique solution 

{
λ2

 = φ1
 (λ1

 )
⋮

λn
 = φn−1

 (λ1
 )

 

and for this curve points we have the formulas, like 
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∂λn
 

∂λ1
 = − (|

B11 ⋯ B1,n−1

⋮ ⋮ ⋮
Bn−1,1 ⋯ Bn−1,n−1

| u1⨂. . . ⨂un−1, u1⨂. . . ⨂un−1) ∙ 

∙ (|

B12 ⋯ B1,n

⋮ ⋮ ⋮
Bn−1,2 ⋯ Bn−1,n

| u2⨂. . . ⨂un, u2⨂. . . ⨂un)

−1

 

(10) 

This proves the Theorem 2. 
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Abstract  

This article is devoted to the geometry and analytical structure of the spectrum of 

self-adjoins multiparameter operators. 

If all “main” parts. A1
 , … , An

  of multiparameter operator family Aj
 −λ1Bj1 − ⋯ −

λnBjn, j = 1,2, … , n are assumed to have compact resolvents except one and tensor-

 
spectrum ⋂ 𝛿𝑛

𝑗=1 [Aj
 λ1Bj1 … , λnBjn]  consists of at most countable number of 

analytical curves which intersection points do not accumulate in the finite part of Rn. 

This analytical structure is an important tool for further investigation of 

multiparameter spectral measures. 
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