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ABSTRACT: This paper introduces a new nonlinear
Laplace transforms allowing to reduce the Navier — Stokes
equation to ordinary Riccati’s one. It is mathematically

dv
proved that the no-linear summand vd— in the Navier —
z

Stokes equation can be reduced to that expressing the
maultiplication of the operators [’ (&,t)- f5 (&,t), where

the functions f"(&,t) and fy(&,t) are images of the
dv

Sfunctions v and d—, correspondingly. Such an approach
z

gives the opportunity to get analytical solution of the
problem of viscous fluid motion in a pipe. The algorithm
may be used to solve the majority of algebraic nonlinear
problems of mathematical physics.
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I. INTRODUCTION

The vast majority of mechanics and physics
phenomena are described by the nonlinear partial
differential equations that, generally speaking, are
analytically integrated in exceptional cases. Commonly
used methods for solving them are known numerical
ones whose accuracy depends on the number and
quality of used approximations (e.g. the difference
method considered by Goldberg [1]). Besides, it is
worthwhile to mark some analytical techniques that
might be applied for solving partial nonlinear
differential equations. For example, a new numerical-
analytical technique, which is based on the methods of
local nonlinear harmonic analysis or wavelet analysis
to the nonlinear root-mean-square (rms) envelope
dynamics developed by Fedorova et al [2-5]. Such an
approach may be useful in all the models in which it is
possible and reasonable to reduce all complicated
problems relating to statistical distributions to the
problems described by systems of nonlinear
ordinary/partial differential equations. On the other
hand, the good review of symmetry technique is
presented in the “Symmetries of Equations of Quantum
Mechanics” by Fushchich and Nikitin [6]. The book
deals with the analysis of old (classical) and new (non-
Lie) symmetries of the fundamental equations of
quantum mechanics and classical field theory, and with
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classification and algebraic-theoretical deduction of
equations of motion of arbitrary spin particles in both
Poincaré invariant approach ([7-16] and references in
[6]). Perhaps, a number of these or other analytical
methods (see conclusion of the paper) are acceptable to
solve, under some simplifying conditions, fluid
mechanics problems, and the Navier-Stokes equation in
particular. They, however, cannot be used as universal
methods for solving all the known algebraic nonlinear
partial differential equations including the Navier-
Stokes’ in the general case. The task we set was just to
develop a universal technique providing analytically
correct solution in all cases; and the nonlinear Laplace
transform is what we propose to use for this purpose.

It’s accepted that the operational methods (in
particular, the Laplace transform) could not be used for
solving nonlinear equations. This opinion is based on
the fact, that this transformation could not linearize the
nonlinear summand introduced into the Navier - Stokes
equation. Nevertheless, in the present paper we
consider a new integral transformation on the base of
Laplace transform, which gives an opportunity to
integrate analytically and correctly the above-
mentioned equation. This transformation is “more
nonlinear” than the ordinary Laplace transform and it is
the property that may lead to accurate solutions of the
problems of fluids motion.

II. MATHEMATICAL FORMULATION OF THE
PROBLEM

For simplicity, we are going to investigate z-problem
of fluid motion, i.e. non - stationary problem of one-
dimensional longitudinal (along the axis z) fluid
motion in cylindrical pipe with velocity uniformly
averaged by cross-section. Our purpose is to find the
distribution function of velocity v (z, t). Under such a
statement to find the required function v (z, t) it is
necessary to solve the following equation

o
pP—tpV—=N—F——, 1)

where the function of pressure P = P (z, t) is taken as
previously known. The Eqn. (1) should be solved under
the next initial and boundary conditions

v(z,t=0)=0,v(z=0,t)=V,(1-e*"),
dv(z:O,t)_¢ (2)
dz -

© 2013 GSTF



GSTF International Journal on Computing (JoC), Vol.3 No.1, March 2013

Existing integral transformations are considered as not
sufficient to integrate the Eqn. (1) because of the
impossibility to use them to acquire the image of

nonlinear summand V% in the left side of the
z

equation. This difficulty may be overcome by using

so-called nonlinear Laplace transform by coordinate z

as follows:

ﬁﬂz,r)e‘szzf 3)

The coordinate Laplace transform recently has
successfully been used to solve some differential equa-
tions [17,18]. The new aspect in the transform (3) is the
double integrating with the kernel equal to exp (-2 z).
Such an approach allows us to use the theorem of
operators multiplication taking place in the operational
calculus. Indeed, if the integrals

FED= vz eidz @)
0
and
fi(En)= Jav(j D) g2y )

are absolutely convergent at Re(&)>o,, then the
double integral

ﬁ°(§,r)~f;<§,t>=TTv<z,t)@e‘sz(dz>2 ©)
00 z

will absolutely converge as well (see the conclusions of
Ditkin and Prudnikov [19]).
The integral (6) is the nonlinear transformation

like (3) from the function v% . Therefore, when using
z

the transformation (3) for nonlinear summand in the
Navier - Stokes Eqn. (1), this one - according to the
basic laws of the operational calculus - will be
expressed in images through multiplication of the

operators f,’(&,¢) and f, (&,¢), where the operators

S (&,t) and f;(&,¢) are defined by the formulas (4)
and (5) respectively.

III. CONVOLUTION OF OPERATORS OF THE

FUNCTIONS V AND %

V4

It follows from validity of the integral transformation
(3) and, consequently, the relationship (6) that the

. . dv .
convolution of the functions v and — should exist,
z

thereto, the image of this convolution has to be equal to

fio(éyt)'f;(éyt) .
Theorem. If the integrals (4) and (5) are
absolutely convergent, then  the function

V(&)= (&E1) f,(&,t) is the ordinary Laplace
transform of the function

V(z0)=[v(z—9) av(g)
0

RAAS-APRe )
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Proof. Since the integrals (4) and (5) are
absolutely convergent, it can be concluded that the
double integral

WD f (0= H W—=—

is also absolutely convergent. If this integral is

5V(W) e EMG

subjected to variables substitution y + w = z, y =%,
then the integration area comes into the plane part
restricted by the straight lines ¢ =0 and & = z, as it has
been established by Ditkin and Prudnikov [19]. Now,
using Fubini theorem, it may be concluded that the
integral (7) is valid for all values of z and moreover

V& =/(&0) (&)=
_OO =&z T _ av(‘g)
—(j;e dziv(z 3)_63 d$

The last relationship proves the correctness of the
expression (6).
The function ¥ ('z,¢ ) is the convolution of the two

original functions v and ? , and therefore, the
z

property of commutability for this function should be

valid. In other words, the equality

vz g 7,9 2vz=9)
gv(z 3) 59 d3—(j)v(3) 53 d$g ®)

should take place. Correctness of the formula (8) can
be proved quite easily. Let’s calculate the left integral
in the relationship (8):

[v(z —S)Mds “W(z—Hx I +
0

Gv(z 3)d19

+I V() ———
The obvious equahty to zero of the first summand in
the right side just leads to the required equation. Now,
it is necessary to show that

V(e = [V (zn)e iz,
0

but this aspect follows directly from the Borel theorem.

Hence, while using the integral transformation (3)
for the Navier-Stokes equation, the nonlinear summand
in images may be represented as a multiplication of the

two operators v (&,7) and v;(&,¢). Each of them is
defined above in order that the final equation relative to
the function v°(£,#) in the images also to be nonlinear.

However, since this equation is an ordinary nonlinear
one, it can also be analytically, correctly resolved.

IV. SOLVING THE PROBLEM OF NON-
STATIONARY MOTION OF VISCOUS FLUID

Let’s now solve the Navier-Stokes equation directly.
The transformation (3) can be used to solve the Eqn.
(1). Keeping in mind the boundary conditions (2), as
well as that of permanence of the pressure P (z,t) on the
boundary z=0 during the whole process of fluid
motion, we obtains the following equation in complex

plane (&,¢):
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1 dv’
5 dt
~Hprerv—ena-emzer -n)
where v’ =v°(&,t) = jv(z,t)e_ézdz, but the function
0

[z;v —Vy(1- e-ff’)]
)]

P° - the image of the pressure in the complex plane
(&1). After certain calculations the equation (9) may be
reduced to

o

dv 0\2 o
—tay (V) —a,v =a 10
77 (V) —ay 3 (10)

which is the general Riccati’s equation; hereafter the
coefficients a;, a; and a; (generally speaking, they are
functions of time ) are determined as

a=¢, a :%52+5Vo<1—e‘*’),

a :%{(Po —EPY V(1) 4 |

As is well known, the general Riccati’s equation
is tightly connected with the linear differential
equations of the second order. If for the considered
time interval 0 < ¢< oo, the functions a; and a, are
continuous and the ¢, is differentiated (it is not difficult
to show that these conditions are naturally valid), then

each solution to the v’(&,¢) of the Riccati’s equation by
means of the transformation

Ve - LD
SUEH
may be reduced to non-zero solution of the linear
differential equation of the second order:

U'—aU —aaU =0 (12)
The transformation (11) is essential for the linear Eqn.
(12) to be often resolved much easier than the original
Riccati’s equation.

The Eqn. (12) with the time depended coefficients
aand a ; is the most general one for determining the
function U (& ,z) and consequently the velocity v (z,t).
Let’s consider some partial cases, for example, one will
investigate the area close to the beginning of pipe; in
images this condition corresponds to approximation
&—oo. Taking into consideration this approximation,
after appropriate estimation of the parameters a;, a
and a; the Eqn. (12) will be reduced to

U -ZLeU — (o) +ane™)=0, (13)
P

an

where the constants «; and « , are found as follows:
1 o
a :;{(PO -&pP )—UfVo} , O :%5%

Solution to the Eqn. (13) should be searched for
as was noted by Kamke [20]

U(é,t>=exp{%§2t}me);

12>
2¢ —xi/2 E(n? .
:—,/aze V== =& -4
x 2\ p°

(14)
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To find the required solution, one should calculate the
derivatives J'V(H) and Y‘,'(H) . Let us use properties of
the Bessel functions in differentiating [21]

1d .
X8, (0 = 27, () (15)
X d
The computations made lead to
d v
d—Nv(X)=Nv-1(X)——Nv(X) (16)
X X
Then, for derivative of the function M th

dt
next expression is obtained

dn, (0 _
d—f):%v&,(ﬂ)—e 2128 a8, ,(0)

According to the last formula, the velocity v’(&,¢) in
images may be written as follows:

1/2
v°(§,t)zc+%[l+{l+:—§P°} }—

_i zQv—l(e) e—lt/Z
s RN.(9)
herein the constant C is introduced into the relationship
(17) for justifying the initial condition (2). In the
considered case, the functions X,,(6) andNX,,_,(€) may

be simplified in accordance with the properties of
Bessel functions given by Olver in [21]:

- Cl ﬁ V_C i1/2 ﬁ —v.
Qzv)2 2v \zv 2v ’

C ( el -
N, = 1 18
- kz(v—l)j 1%

. ) 1/2 0 —(v-1)
N zw-1 2(v-1)

, 347

After this representation for the ratio Ny , one gets
14
the following expression:
N, _(v—ljm (v-1)""eo N
N, 14 v’ 2
1/2
2 (19)
~ (V ] ed —e AV o712
v

2
ﬂé’[l +2L }
ne

In deducing the last formula we neglect the
second summands in the expansions (18), because
under great values of v these summands do not effect
in fact on the final result as well as the condition va1-1
is used which is valid at considered values of the order
of the Bessel functions.

The relationship (19) may be simplified if to keep
in mind the approximation £ — co. Then, expanding the

denominator in the formula (19) and having restricted
ourselves by two terms we get
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1/2
N, zi[iVoj e—)(t/Z[l_ 220 Po] 20)
zNév 2 775 n 5

The formula (20) allows to write the expression for
fluid velocity in the images v°(&,¢) :

1/2
v°(§,t):C+%[l+{l+2—§P°} J_

2¢ n-é

The constant C can be found from the initial condition
(2). After realizing appropriate calculations for fluid
velocity in images we may finally obtain

v<§0—2@[ —jé :}1 ety (2)

For finding the obvious form of the function

20

v*(&,1) it is necessary to know the distribution P (z).

For the problem let’s assume that the pressure (which
is constant by time) changes by coordinate z by
exponential law

P(z)=Fe ™, (23)
In our opinion, the law (23) is the most general one out

of possible ways describing the character of fluid
pressure reducing along the pipe length. In images, the

f . The final

law (23) will correspond to P° =
K+¢&

expression is
el 2p R
v@”24 ki D)

Returning to real plane (zt), we obtain the
following formula for the velocity:

v(z,t)=—m" vy 1—2’0P0+—2KZ_1 P
2 n K 25)

](l—e_’”) (24)

x(1—e™#")
Taking into account that the values of magnitudes z
and x are small, it may be transformed to

v(z,t):ezﬁ[l—ﬂﬁzPofJ(l—e‘l’) (26)

The relationship (26) bears witness about square law of
fluid velocity change (decreasing) along the pipe axis
near the pipe beginning. By analyzing the expression
(26), it can conclude that under the problem’s
conditions the fluid velocity begins to arise from zero
till certain stationary value v, ( z ) which is defined by

Aﬁ—[hﬁwJ
n

The velocity value (26) is correct only if the two
first summands in the above expansion for square root

-1/2
[1+4TpP°] (valid for heavy viscous fluid and
e

small pressures) are taken into account. In account of
the summands of higher degrees, there will be different
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formulas for the fluid velocity. For example, taking
into account the third summand in the expansion

-1/2
[1+4Tpp°] o1 2P pe, 6P ~(P)?
n n*é n*s?
one gets additional term for the (25), which describes
increment of the liquid velocity by the axis z. As a
result, for the function v (zt) there is the sign-
alternating series

2
v(z,t):% 1—£2POZ2 +3—p4P0224 X
2 n 4n )

x(l—e#")
The relationship (27) is obtained under the same
conditions as the formulas (25) and (26).

The analysis of (27) shows that the value of the
liquid velocity undergoes a minimum. It can be proved
that this extremum is placed on a distance z. from the
forward end of the pipe, where

. 2
cr n 3P0p

In other words, despite the exponentially decreasing
pressure P by coordinate z, the liquid velocity has a
minimum. Probably, this minimum may be explained
by relaxation properties of the liquid. Thereto, as it
follows from our calculations, under certain conditions,
the number of extremums may increase considering the
summands of higher order in the above expansion”.
Positions of these extremums are determined from the
algebraic equation

S (_1Y g 22
Zo - a;z7 =0, (28)
i

where o,y =1; sign before the coefficient o, depends
upon whether the number N is odd or even. Thus, one
may conclude that in the areas close to the forward end
of the pipe, the liquid velocity is a complex function
like damping vibrations. The formula (27) allows to
find an asymptotic value of the liquid velocity at steady
regime of the motion:

vz =l £ pz? +3p Pzt (29)
0
2 n’ 4n*

Validity of the final formulas (26) and (29)
actually depends on how correct the expansions (18) of
the Bessel functions X,(#)and ¥,_;(9) are. Hence,

before comparing the results obtained in this paper
with other available approximations, it is necessary to
verify precision of the expansions listed by Olver [21].
Other cases of practical interest (distance remote from
the forward end of the pipe, motion under the laser

" The fig.1 clearly shows the difference between formulas
(26) and (29): taking of the second-degree summand in the
expansion into account leads to appearance of the extremum.
It is reasonable that the liquid will behave as described by the
formulas (26) and (29) only at values of z exceeding z
calculated by (28) and the previous expression. At the
interval z < z, however, the liquid velocity will
monotonically reduce.
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radiation action) have been considered by the author
[22].

Dependence of liquid velocity on coordinate calculated by
formuilas (26) and (29)

v(z), m/s

Fig. 1 Dependences of liquid velocity on coordinate
calculated by formulas (26) and (29): Red color
corresponds to formula (26), blue color - (29).
Calculations have been carried out for some typical
values of commercial liquid parameters: p = 700
kg/m®, n=1000 kg/m-sec. Checking them is explained
by conditions of the problem.

V. CONCLUSION

The method of nonlinear two-dimensional Laplace
transforms developed in the present paper is principally
a new technique for integrating nonlinear partial
differential equations. It is worthwhile to note that
precision of the result obtained depends upon accuracy
of expansions for the Bessel functions N,(8) and

N,_1(0) like formulas (18). As it can be shown, the

Navier - Stokes equation can be, in the most general
cases, reduced to the equation of Riccati with variable
coefficients. Hence, after realizing the nonlinear
transformation (3) the Navier - Stokes equation can be
reduced only to solving the Riccati’s equation of
certain difficulty. In principle, this conclusion is not
speculative since time-independent solution of the
Navier-Stokes equation (steady case) may be exactly
taken from the Riccati’s equation [23]. The theory of
the last equation is developed quite thoroughly, so the
above-mentioned transformation gives an opportunity
to get analytically correct solution to the great number
of problems in hydrodynamics, heat physics,
mechanics etc. for various processes having practical
interest.

In this regard, the method developed in the paper
distinguishes from various recent methods, e.g. those
developed by Rogerson and Yeow [24] realized by
means of artificially introduced functions (a typical
example, the Papkovich—Fadle eigenfunctions recently
considered in [24]).and further manipulations with
them. Thereto, for each problem of liquid motion one
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should look for appropriate Papkovich-Fadle eigen-
functions. In comparison with the latter the method of
nonlinear Laplace transforms is much more universal
and gives an opportunity without great efforts to get
imaging equation relative to the function v °(¢ 7). After
finding the v° (£ 1) one can return to real plane (z, ?)
and define original function v (z, ¢).

Finally, we would like to touch upon some
generalization of the two-dimensional Laplace
transforms. We consider the using of the above-
developed technique for solving nonlinear partial
differential equations with three and higher order. To
do so, it is necessary to apply the nonlinear Laplace
transform of appropriate order. For example, if one has
third-order partial nonlinear differential equation, then
for solving it one can use the Laplace transform of the
form

11T /(e a2y 30)

000
This procedure will lead to third-order ordinary
differential equation relative to the image /<, ) which
then can be solved without any problem.

VI. NOMENCLATURE AND GREEK SYMBOLS

aj,a; and a ;- some coefficients including into the
equation of Riccati (10),
N — number of summands in the expansion for

4 -1/2
[1+ 2p oj '
né

V, - stationary value of fluid velocity at point z = 0, at
t — oo,

v ( z, t )- axial velocity of liquid in cylindrical pipe,

v’ (£, 1) - images of the liquid velocity,

U (¢ ,¢)-additional function for finding the liquid
velocity,

o, — constant coefficients in the expansion (28),

p - the density of moving fluid,

n - its viscosity,

¢ - the Laplace coordinate parameter,

x and ¢ - certain constant parameters characterizing
relaxation properties of the fluid and its velocity
gradient in the pipe beginning, respectively,

o, - the absolute abscissa of convergence,

K - certain constant coefficient,

N, () -the linear combination of the Bessel functions

J,(0)and Y,(0) like N, (0)=C,J,(0)+C,Y,(0),

v - order of the Bessel functions; due to the conditions
on involved problem runs to infinity,
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