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Abstract

In this article we use results of the work [1]. We have analogous results for the
group SU(2) and prove specific integral formulas for the matrix elements represen-
tations of group SU(2) (in particularly for the spherical functions) and some results
concerning classical orthogonal polynomials are given.
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1. Introduction

In this paper we extend a certain sample of well-known classical theorems about Fourier
series on the circle, in particulary where as D. Jackson, Szasz, S.B. Stechkin theorems
to compact non-Abelian groups. Proofs of these classical theorems can be easily found
in all the standard text books (for instance [2–4] and [5]).

Several papers devoted to generalizations of these theorems have been considered
by many authors published widely in recent years. The case of the sphere S

n ⊂ R
n+1

has been considered in books ( [6] and its references) and also in papers (see [7] and its
references). The non-Abelian compact separable totally disconnected case was done by
Benke (see [8] and its references).

We note that, while these classical theorems seem at first rather unrelated, the group-
theoretic generalizations provide certain links between them and thereby throw a little
light on some classical results for Fourier series.
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The group-theoretic method is still quite elementary because the only required tools
are the Haar measure on a compact group G.

For a general locally compact group where Haar measure is the principal analytic
concept, the Hilbert space L2(G) and the irreducible unitary representations become the
central objects in analysis on G.

Finally we solve the problems formulated in [9] (p. 366), see also [3] (p. 9, 1.3.5).

2. Preliminaries and Notations

Let G be a compact topological group, dg – Haar measure on G normalized by the

condition
∫

G

dg = 1 and Ĝ the dual space of G . For α ∈ Ĝ let Uα denote the irreducible

representation of the group G and dα, χα and tαij (i, j = 1, 2, . . . , dα) respectively the
dimension, character and matrix elements of Uα. Note that any topological irreducible
representation of G is finite dimensional and unitary. We note that Ĝ is finite or countable.
(If G is finite, then Ĝ is also finite).

We denote by L2(G) the set of all functions f for which |f (g)|2 is integrable on
G. From Peter-Weyl theorem any function f ∈ L2(G) can be expanded into a Fourier
series with respect to this bases tαij of the form

f (g) =
∑
α∈Ĝ

dα∑
i,j=1

aα
ij t

α
ij (g),

where the Fourier coefficients aα
ij are defined by following relations

aα
ij = dα

∫
G

f (g)tαij (g) dg,

such that tαij (g) = tαij (g
−1), where g−1 is the inverse of g, and the Parseval equality

‖f ‖2
2 =

∫
G

|f (g)|2 dg =
∑
α∈Ĝ

1

dα

dα∑
i,j=1

|aα
ij |2,

holds. The basic result of harmonic analysis on a compact group can be found for
example in [9], [10] and [11].

For simplicity we denote ‖·‖L2(G) = ‖·‖2. Let us introduce the following notations:

(Shuf )(g) =
∫

G

f (tut−1g) dt,

(�uf )(g) = f (g) − (Shuf )(g),

where u, g ∈ G.
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We note that α is a complicated index. Since Ĝ is a countable set, there are only
countably many α ∈ Ĝ for which αα

ij �= 0 for some i and j ; enumerate them as
{α0, α1, . . . , αn, . . .}. So dα0 < dα1 < dα2 < · · · < dαn

< · · · . Because of that, the
symbol “α < n” is interpreted as {α0, α1, . . . , αn−1} ⊂ Ĝ, and α ≥ n denotes the set
Ĝ\(α < n). Let dα as usual be the dimension of Hα. For typographical convenience we
will write dn for the dimension of the representation Uαn, n = 1, 2, . . . (see [9], p. 458).

We denote by En(f )2 the approximation of the function f ∈ L2 by “spherical”
polynomials of degree not greater than n;

En(f )2 = inf{‖f − Tn‖2}, n = 1, 2, . . . ,

where Tn(g) =
∑
α<n

dα∑
i,j=1

aα
i,j t

α
i,j (g) and aα

i,j are arbitrary constants.

Let Wn be a sequence of neighborhoods of e (e – the identity element of G), i.e.,

Wn(u) = {u : ρ(u, e) <
1

n
, u ∈ G},

where ρ is a pseudo-metric on G. We denote by

ωn(f )2 = sup
u∈Wn(u)

{‖Shuf − f ‖L2(G)}

the modulus of continuity of the function f ∈ L2(G). The followings are simple but
useful facts:

‖(Shuf )(g)‖2 ≤ ‖f ‖2, ‖�uf ‖2 −→ 0 as u −→ e.

Also,
lim

n−→∞ ωn(f )2 = 0.

Now we prove the following simple but useful lemma:
In the work [1] the following is proved:

Lemma 2.1. The following equality holds for all u, g ∈ G:

(Shut
α
ij )(g) = χα(u)

dα

tαij (g).

Also in the work [1] with the help of the lemma is proved.

Theorem 2.2. If f (g) ∈ L2(G) and f (g) �≡ constant , then

En(f )2 ≤
√

dn

dn − 2
ωn(f )2.

From this theorem we have:
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Corollary 2.3. If f ∈ L2, then


∑

α≥n

1

dα

dα∑
i,j=1

|aα
ij |2




1/2

≤
√

dn

dn − 2
ωn(t)2.

This result is proved by Stechkin for the trigonometric case.

Corollary 2.4. If f ∈ L2, then

|aαn

ij | ≤
√

dn

dn − 2
ωn(f )2, i, j = 1, 2, . . . , dαn

.

Theorem 2.5. If f (g) ∈ L2(G), then

∞∑
n=1

ωn(f )2√
n

< +∞ ⇒ f (g) ∈ A(G).

This theorem is analogous to the Szasz theorem of the classical Fourier series.

Theorem 2.6. If f (g) ∈ L2(G), then

∞∑
n=1

En(f )2√
n

< +∞ ⇒ f (g) ∈ A(G).

This theorem is also analogous to a theorem in the trigonometric case proved by S.B.
Stechkin.

3. Applications to the Groups SU(2) and SO(3)

In this section we make considerable use of the results of § 2, i.e., we shall primarily
be concerned with the analogs and implications for the groups SU(2) and SO(3) of the
theorems of Section 2. These groups are of fundamental importance in modern physical
theories (see [9]).

Recall that SU(2) consists of unimodular unitary matrices of the second order, i.e.,

SU(2) :=
{
u =

(
α β

−β̄ ᾱ

)
, |α|2 + |β|2 = 1

}
,

and SO(3) = SO(3, R) is the group of all 3 × 3 real matrices such that g′g = e3 and
det g = +1 (g′ is the transpose matrix of the matrix g and e3 – identity element of the
group SO(3).

We note that the groups SU(2) and SO(3) are compact, connected, Lie groups, both
have dimension 3. Also, SU(2) is homomorphic to the 3-dimensional sphere S

3 ⊂ R
4.
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From this point of view, the approximation theory on the SU(2) may be formulated
analogous on the sphere.

Also, SO(3) is isomorphic to the factor group SU(2)/{±e2} (e2 – the identity el-
ement of SU(2)). Exactly two elements of SU(2) map onto one element of SO(3).
Consequently, problems of the approximation theory for the groups SU(2) and SO(3)

are similar (see [12]). For a more geometrical derivation of the relationship between
SU(2) and SO(3) see Gel’fand [13] (also see [14] and [15]).

We use notation which is consistent with the notation in the book of N. Ja. Vilenkin
and A.U. Klimyk [15].

The invariant integral on SU(2) has the form

∫
SU(2)

f (u) du = 1

16π2

∫ 2π

−2π

∫ π

0

∫ 2π

0
f (ϕ, θ, ψ) sin θ dϕ dθ dψ,

where the parameters ϕ, θ, ψ called Euler angles satisfy the conditions

0 ≤ ϕ < 2π, 0 ≤ θ < π, −2π ≤ ψ < 2π.

For the matrices u1(ϕ1, θ1, ψ1) and u2(ϕ2, θ2, ψ2) of SU(2) we have

u(ϕ, θ, ψ) = u1(ϕ1, θ1, ψ1)u2(ϕ2, θ2, ψ2).

Expressing the angles ϕ, θ, ψ in terms of ϕi, θi, ψi, i = 1, 2, gives the following
relations (see [14] or [15]):




cos θ = cos θ1 cos θ2 − sin θ1 sin θ2 cos(ϕ2 + ψ1),

eiϕ =
(

eiϕ1

sin θ ′

)
(sin θ1 cos θ2 + cos θ1 sin θ2 cos(ϕ2 + ψ1) + i sin θ2 sin(ϕ2 + ψ1),

ei(ϕ+ψ) =
(

ei(ϕ1+ψ1)/2

cos θ ′
2

)
(cos

θ1

2
ei(ϕ2+ψ1) cos

θ2

2
− sin

θ1

2
sin

θ2

2
e−i(ϕ2+ψ1)/2.

(3.1)
Let us now compute

u(ϕ, θ, ψ) = t1(ϕ1, θ1, ψ1) · u2(ϕ2, θ2, ψ2)u
−1
1 (ϕ1, θ1, ψ1)g(ϕ3, θ3, ψ3).

We note that the direct numerical calculations of this product are mildly instructive but
already a little tedious.
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We use relation (3.1) to obtain the following formulas:


cos θ = cos θ ′ cos θ ′′ − sin θ ′ sin θ ′′ cos(ϕ′′ + ψ ′),

eiϕ =
(

eiϕ

sin θ

)
(sin θ ′ cos θ ′′ + cos θ ′ sin θ ′′ cos(ϕ′′ + ψ ′) + i sin θ ′′ sin(ϕ′′ + ψ ′),

ei(ϕ+ψ) =
(

ei(ϕ′+ψ ′)/2

cos θ
2

)
(cos

θ ′

2
ei(ϕ′′+ψ ′) cos

θ ′′

2
− sin

θ ′

2
sin

θ ′′

2
e−i(ϕ′′+ψ ′)/2,

cos θ ′ = cos θ1 cos θ2 − sin θ1 sin θ2 cos(ϕ2 + ψ1),

eiϕ′ =
(

eiϕ1

sin θ ′

)
(sin θ1 cos θ2 + cos θ1 sin θ2 cos(ϕ2 + ψ1) + i sin θ2 sin(ϕ2 + ψ1),

ei(ϕ′+ψ ′) =
(

ei(ϕ1+ψ1)/2

cos θ ′
2

)
(cos

θ1

2
ei(ϕ2+ψ1) cos

θ2

2
− sin

θ1

2
sin

θ2

2
e−i(ϕ2+ψ1)/2,

cos θ ′′ = cos θ1 cos θ2 − sin θ1 sin θ3 cos(ϕ3 + ϕ1),

eiϕ′′ =
(

eiϕ1

sin θ ′′

)
(− sin θ1 cos θ3 + cos θ1 sin θ3 cos(ϕ3 − ϕ1) + i sin θ3 sin(ϕ3 + ϕ1),

ei(ϕ′′+ψ ′) =
(

ei(ϕ1+ψ1)/2

cos θ ′′
2

)
(cos

θ1

2
ei(ϕ3+ϕ1) cos

θ3

2
+ sin

θ1

2
sin

θ3

2
e−i(ϕ3+ψ3).

(3.2)
After this formula with the help of the lemma we have

1

16π2

∫ 2π

−2π

∫ π

0

∫ 2π

0
ei(mϕ+nϕ)P l

mn(cos θ) sin θ1 dϕ1 dθ1 dψ1

= sin(l + 1
2)t

(2l + 1) sin t
2

ei(mϕ3+nψ3)P l
mn(cos θ3)

,

where cos
t

2
= cos

θ2

θ
cos

ϕ2 + ψ2

2
and cos θ are connected with relation (3.2).

Also we know that the dimension of the representation T l of SU(2) is equal to 2l+1,

where l = 0,
1

2
, 1, . . . and the matrix elements of T l for the group SU(2) are defined by

the formula
t lmn(u) = e−(nψ+mφ)P l

mn(cos θ)i(m−n).

Expressing t lmn(u) in terms of P l
mn(cos θ), we arrive at the following conclusion:

Any function f (φ, θ, ψ), 0 ≤ φ < 2π, 0 ≤ θ < π, −2π ≤ ψ < 2π , belonging to
the space L2(SU(2)), such that∫ 2π

−2π

∫ 2π

0

∫ π

0
|f (φ, θ, ψ)|2 sin θ dθ dφ dψ < ∞,
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can be expanded into the mean-convergent series

f (φ, θ, ψ) =
∑

l

l∑
m=−l

l∑
n=−l

αl
mne

−i(mφ+nψ)P l
mn(cos θ),

where

αl
mn = 2l + 1

16π2

∫ 2π

−2π

∫ 2π

0

∫ π

0
f (φ, θ, ψ)ei(mφ+nψ)P l

mn(cos θ) sin θ dθ dφ dψ.

In addition, we obtain from the Parseval equality that

∑
l

l∑
m=−l

l∑
n=−l

1

2l + 1
|αl

mn|2 = 1

16π2

∫ 2π

−2π

∫ 2π

0

∫ π

0
|f (φ, θ, ψ)|2 sin θ dθ dφ dψ.

En(f )2 will denote the approximation of the function f ∈ L2(SU(2)) by spherical
polynomials of degree not greater than n:

En(f )2 = inf
al
ij

‖f (ϕ, θ, ψ) − Tn(ϕ, θ, ψ)‖2, n = 1, 2, . . . ,

where

Tn(ϕ, θ, ψ) =
∑
l∈Kn

l∑
m=−l

l∑
n=−l

al
mne

imϕ+inψP l
mn(cos θ),

in this Kn = {0,
1

2
, 1, . . . ,

n − 1

2
}, n natural number.

Let Wn be a sequence of neighborhoods of e2, i.e.,

Wn(ϕ2, θ2, ψ2) = {(ϕ2, θ2, ψ2) : | cos
t

2
| <

1

n
;

0 ≤ ϕ2 < 2π; 0 ≤ θ2 < π; −2π ≤ ψ2 < 2π},
where cos

t

2
= cos

θ2

2
cos

ϕ2 + ψ2

2
and

ωn(f )2 = sup
ϕ2,θ2,ψ2

{‖f (ϕ3, θ3, ψ3)− 1

16π2

∫ 2π

−2π

∫ π

0

∫ 2π

0
f (cos θ) sin θ1 dϕ1 dθ1 dψ1‖2,

where cos θ is connected with formulas (3.2).
By using Theorem 2.2 and Corollary 2.3, we obtain the following:

Theorem 3.1. If f (φ, θ, ψ) ∈ L2(SU(2)), then

En(f )2 ≤
√

1 + 2

n − 1
ωn(f )2,
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and 


∑
l≥n

l∑
m=−l

l∑
n=−l

1

2l + 1
|αl

mn|2



1/2

≤
√

1 + 2

n − 1
ωn(f )2.

Using the relation between the polynomials P (α,β)
n (z) and P l

mn(z) we conclude that

P l
mn(z) = 2−m

[
(l − m)!(l + m)!
(l − n)!(l + n)!

]1/2

(1 − z)
m−n

2 (1 + z)
m+n

2 P
(m−n,m+n)
l−m .

The Jacobi polynomials obtained here are characterized by the condition that α and β

are integers and n + α + β ∈ Z+.
Now we consider the following case:

Let L
(α,β)
2 [−1, 1] be the Hilbert space of the functions f defined on the segment [−1, 1]

with the scalar product

(f1, f2) =
∫ 1

−1
f1(x)f2(x)(1 − x)α(1 + x)β dx,

then any function f in this space is expanded into the mean-convergent series

f (x) =
∞∑

n=0

αnP
ˆ(α,β)

n (x), (3.3)

where the polynomials P
ˆ(α,β)

n (x) are given by the formula

P
ˆ(α,β)

k (x) = 2− α+β+1
2

[
k!(k + α + β)!(α + β + 2k + 1)

(k + α)!(k + β)!
]1/2

P
(α,β)
k (x)

and

αn =
∫ 1

−1
f (x)P

ˆ(α,β)
n (x)(1 − x)α(1 + x)β dx. (3.4)

The Parseval equality∫ 1

−1
|f (x)|2(1 − x)α(1 + x)β dx =

∞∑
n=0

|α|2 (3.5)

holds. Formulas (3.2), (3.4) and (3.5) are proved for non-negative integer values of α

and β. One can show that they are valid for arbitrary real values of α and β exceeding
−1.

Theorem 3.2. If f (x) ∈ L2[−1, 1], then the followings hold for the Jacobi series

En(f )2 ≤
√

1 + 2

n − 1
ωn(f )2,
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and { ∞∑
l=n

|αl|2
}1/2

≤
√

1 + 2

n − 1
ωn(f )2.

Finally, by using Theorems 2.5 and 2.6 we have an absolutely convergence series Jacobi
in the space L2[−1, 1].
Remark 3.3. The basic results of approximation theory on SU(2) can be found, for
example, in [16] and [17].
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