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Abstract

In the present paper we study the properties of the least upper
bounds of the best approximation by algebraic polynomials in metrics
L1 and L∞ for classes of convolutions defined on the group SU(2).

The exact constants for best approximation by trigonometric poly-
nomials in L∞(−π, π) is studied by many authors.

Finally in this paper we proved that for group SU(2) analog of the
Favard–Akhiezer–Krein theorem does not hold.

Introduction
The present paper studies the properties of the least upper bounds of the best
approximations by algebraic polynomials in metrics L1 and L∞ for classes of
convolutions defined on the group SU(2).

The exact constants for best approximation by trigonometric polynomi-
als in L∞(−π, π) for appropriate classes of functions differentiable on the
circle and harmonies in the disk were found by Favard [6], Akhiezer and
Krein [3], and Krein [10]. Nikol’skij [12] used the duality theorem to prove
that these constants coincide with the corresponding constants of the best
approximation in L1(−π, π).

The results in questions were described and generalized in monographs
[9, 15] and articles [7].
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Certain aspects of the problem of finding the constants of a best approx-
imation by algebraic polynomials on the group SU(2) are investigated in the
paper.

We note that of the problem of finding the constants of a best approx-
imation by algebraic polynomials on (m − 1)-dimensional sphere Sm−1 are
investigated in the paper [7]. The paper [7] proved that the m-dimensional
analog of the Favard-Achiezer-Krein theorem does not hold when m > q.

Analogous theorems may be proved by the same methods for group
SU(2), so that the group SU(2) is homomorphic with three dimensional
sphere.

In this point of view the announce of this paper is that the approximation
theory on the group SU(2) may be formulated in a manner that so closely
parallels approximation theory on the sphere. History of approximation the-
ory on the sphere as well as references to further works dealing with this
circle of ideas can be found partly in the papers [4, 11]. The idea of our
present paper is similar to [7].

The group SU(2) consists of unimodular unitary matrices of the second
order, i.e.,

SU(2) :=

{(
α β

−β̄ ᾱ

)
, |α|2 + |β|2 = 1

}
.

As a topological space, the group SU(2) is homeomorphic with three dimen-
sional sphere S3 ⊂ R4 in particular SU(2) is simply connected lie group. The
idea of our present paper is similar to [7].

Let Lp(SU(2)), 1 ≤ p < ∞, denote the space of functions f(g), g ∈ SU(2),
with finite norm

‖f‖p = (
∫
SU(2)

|f(g)|p dg)
1
p ,

where dg-Haar measure on the SU(2) normalized by the condition
∫
SU(2) dg =

1. In the case p = ∞ the functions are assumed to be continuous.
Denote by δ the Beltrami-Laplace operator on the group (see [16]), to

which corresponds the multiplier sequence {α(α + 1)}α∈K .
Let K = {0, 1

2
, 1, 3

2
, . . .} denote the set of all equivalence classes of irre-

ducible unitary representations of K. If α ∈ K, Uα is a member of the class
α acting on the (2α+1)-dimensional space of polynomials of order ≤ 2α, and
let uαij(g) (α ∈ K, i, j ∈ {−α,−α+1, . . . , α} be matrix elements of this repre-
sentation’s Uα. Let χα(g) be a character Uα, i.e. χα(g) =

∑α
i=−α uαii(g). The
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space of matrix elements on SU(2), which coincides with the eigenspace of the
operator δ corresponding to the eigenvalue α(α+1), is denoted by Hα, α ∈ K,
the spaces Hα and Hβ(α 6= β) are mutually orthogonal in L2(SU(2)) and the
space L2(SU(2)) can be decomposed into the orthogonal sum (see [16]):

L2(SU(2)) =
∑
α∈K

⊕
Hα,

The orthogonal projection Yα : L2(SU(2)) → Hα is given by the formula

(Yαf)(g1) = (2α + 1)
∫
SU(2) f(g1)χα(g1g

−1
2 )dg2

= (2α + 1)
∫
SU(2) f(g−1

2 g1)χα(g2)dg2

= (f ∗ (2α + 1)χα)(g).

The function f1 ∗ f2 is called the convolution of the functions f1, f2 and
defined by following relations on the group SU(2).

f1 ∗ f2(g) :=
∫
SU(2)

f1(t)f2(t
−1g) dt =

∫
SU(2)

f1(gt−1)f2(t) dt,

where t−1 is the inverse of t.
Further, arbitrary on compact group inequality Young(see, for exam-

ple [14]), when f1 ∈ Lq; f2 ∈ Lr

‖f1 ∗ f2‖p ≤ ‖f1‖q · ‖f2‖r, 1 ≤ p, q, r ≤ ∞,
1

p
=

1

q
+

1

r
− 1, (1)

holds.
En(f)p will denote the best approximation of the function f ∈ Lp(SU(2)), 1 ≤

p ≤ ∞ by spherical polynomials of degree not greater than n:

En(f)p = inf{‖f − Tn‖p : Tn ∈
∑
α∈Kn

⊕
Hα},

where Kn denoted first n elements of set K.
The sequence {En(f)p}∞n=0 monotonically decreases to zero, and this is the

unique characteristic property of a sequence of best approximations. Namely,
the sequence {En(f)p}∞1 of best approximations is a constructive character-
istic of the function f .
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The basic Result of approximation theory on SU(2) can be found, for
example, in [13, 14]. Finally, we note that, in [14] proved that for all compact
groups, if function f is representable in the form:

f(g) = (f1 ∗ f2)(g) + C0,

(where C0 means constant) and 1 ≤ p, q, r ≤ ∞ 1
p

= 1
q
+ 1

r
−1, also if f1 ∈ Lq,

f2 ∈ Lr then f ∈ Lp; further holds inequality

En(f)p ≤ En(f1)qEn(f2)r. (2)

(this follows that from ([1]) see [14]).

1 Main results

Taking into account that −δ is a nonnegative operator, we can define its
fractional power (−δ)β, β > 0, to be the extension by continuity from the
set of infinitely smooth functions on group SU(2) to the natural domain
of the operator with multiplier. sequence {[α(α + 1)]β}α ∈ K, i.e., for
f ∈ C∞(SU(2)) with Fourier series on compact group SU(2)

f(g) =
∑
α∈K

[(2α + 1)χα ∗ f ](g) =
∑
α∈R

(Yαf)(g), (3)

(−δ)βf is defined as the sum of the absolutely and uniformly convergent
series ∑

α∈K
[α(α + 1)]β(Yαf)(g) = (−δ)βf(g),

and in the general case we choose a sequence fν ∈ C∞(SU(2)), ν = 1, 2, . . .,
such that ‖fν − f‖p → 0 as v → ∞, and if the sequence (−δ)βfν turns to
be convergent in Lp(SU(2)) to some function F ∈ Lp(SU(2)), then the limit
function will be taken as the definition of (−δ)βf , i.e., (−δ)βf := F .

We define the space W β
p (SU(2)), 1 ≤ p ≤ ∞, α ≥ 0

W β
p (SU(2)) := {f ∈ Lp(SU(2)) : ‖f‖Wβ

p
: ‖f‖p + ‖(−δ)

β
2 f‖p < ∞}.

In particular case as p = 1 and q = 1, follow that r = 1, also from (2) we
have

En(f)1 ≤ En(f1)1En(f2)1
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p = ∞, q = ∞, follows that r = 1, also

En(f)∞ ≤ En(f1)∞En(f2)1

In the work [1] proved the following

Theorem 1 Suppose that 1 ≤ p ≤ ∞ and β > 0. The following conditions
are equivalent:

• (a) f ∈ W β
p (SU(2)).

• (b) There exists a function F1 ∈ Lp(SU(2)) such that

[α(α + 1)]
β
2 (Yαf)(g) = (YαF1)(g), α ∈ K. (4)

• (c) There exists a function F2 ∈ Lp(SU(2)) such that f can be repre-
sented as the convolution on group SU(2) i.e.,

f(g) = (Bβ ∗ F2)(g) + C0 =
∫
SU(2)

BβF2(t
−1g)dt + C0 (5)

Further, almost everywhere on SU(2)

(−δ)
β
2 f = F1 = F2 − Y0F2 (6)

where

Bβ(g) =
∑

α∈K/{0}

(2α + 1)χα(g)

[α(α + 1)]
β
2

.

As known that [16], χα(g) =
sin(α+ 1

2
)t

sin t
2

where cos t
2

= cos θ
2
cos φ+ψ

2
.

By Theorem 1, we have

f(g) = (δ
β
2 f ∗Bβ)(g),

and using inequality (2) we obtain

En(f)1 ≤ En(δ
β
2 f1)1En(Bβ)1.

Now we complete En(Bβ)1, i.e.,

En(Bβ)1 = inf
Tn∈Hn

∫
SU(2)

|Bβ(g)− Tn(g)| dg. (7)

5



If the function f(g) is constant on classes of conjugate elements, i.e. de-
pends on t only: f(u) = F (t), then∫

SU(2)
f(g) dg =

1

π

∫ 2π

0
F (t) sin2 t

2
dt. (8)

(in more detail see [16], p. 362.)
Hence, from (7) and (8) we have

En(Bβ)1 = inf
aλ,λ∈K

∫
SU(2)

∣∣∣∣∣∣
∑
λ∈K

(2λ + 1)χλ(g)

[λ(λ + 1)]
β
2

−
∑
λ∈Kn

aλχλ(g)

∣∣∣∣∣∣ dg

= inf
aλ,λ∈K

1

π

∫ 2π

0

∣∣∣∣∣∣
∑
λ∈K

(2λ + 1) sin(λ + 1
2
)t

[λ(λ + 1)
β
2 sin t

2

−
∑
λ∈Kn

aλ
sin(χ + 1

2
)t

sin t
2

∣∣∣∣∣∣ sin2 t

2
dt

= inf
aλ,λ∈Kn

2β

π

∫ π

0

∣∣∣∣∣∣
∞∑
k=1

(k + 1) sin(k + 1)t

[k(k + 2)]
β
2

−
n∑
k=1

ak sin(k + 1)t

∣∣∣∣∣∣ sin t dt

where kN denoted n-number elements of set K.
In quite analogous fashion it is possible to prove theorem’s 1 from [7], we

obtain following:

Theorem 2 For functions Bβ(t), the equality

En(Bβ)1 =
2β

π

∫ π

0

∞∑
k=1

(k + 1) sin(k + 1)t

[k(k + 2)]
β
2

sin tsign cos(n + 1)t dt

holds.

Using by formulas

sin(k + 1)t sin t = 1
2
[cos kt− cos(k + 2)t]

sign cos(n + 1)t = 4
π

∑∞
j=1(−1)j cos(2j+1)(n+1)t

2j+1

We can compute this integral. But, direct founding of the sum
∑∞
k=1

(k+1) sin(k+1)t

[k(k+2)]
β
2

leads to involved and difficult-computations.
It is quite possible that Br(t) =

∑∞
k=1

(k+1) sin(k+1)t

[k(k+2)]
β
2 sin t

is certain problems

indefinite sum this series will not be expressible in terms of elementary func-
tions.
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In paper [1] other methods proved that En(Bβ)1 ∼ 1
nβ . From this we

have:

Theorem 3 As n →∞, following equality is valid:∫ π

0

∞∑
k=1

(k + 1) sin(k + 1)t

[k(k + 2)]
β
2

sin tsign cos(n + 1)t dt = O
(

1

nβ

)
.

Remark. The authors could not complete the following integral exactly:

Y =
∫ π

0
(1−cos θ)α(1+cos θ)β

∞∑
k=1

P (α,β)
n (cos θ)

‖P (α,β)
n (cos θ)‖2[n(n + α + β + 1)]r

sin θsign sin(n+1)θ dθ

where α, β ≥ −1
2
,r ≥ 1 and P (α,β)

n (x)-polynomials Jacobi. But, we know
that:

Y ∼ n−2r
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