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We consider the generalized shift operator defined by (Shuf)(g)=
∫
G f(tut−1g)dt

on a compact group G, and by using this operator, we define “spherical” modulus
of smoothness. So, we prove Stechkin and Jackson-type theorems.
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1. Introduction. In this paper, we prove some theorems on absolutely con-

vergent Fourier series in the metric space L2(G), where G is a compact group.

The algebra of absolutely convergent Fourier series is a subject matter about

which a good deal, although far from everything, is known (see [5, page 328]).

Like many branches of harmonic analysis on T and R, the theory of absolutely

convergent Fourier series is a fruitful source of questions about the corre-

sponding entity for compact groups. By using some absolute convergence the-

orems of the classical Fourier series, (see [1, 11]), a generalized form of Stechkin

[6] and Szasz theorem [1, 11] of the Fourier series on compact groups is ob-

tained. Thus, we solve open problems formulated in [5, page 366] (see also [3,

Chapter I, page 9]).

2. Preliminaries and notation. Now, we explain some of the notation and

terminologies used throughout the paper.

Let G be a compact group with a dual space Ĝ, dg denote the Haar measure

on G normalized by the condition
∫
Gdg = 1, and

∫
G f(g)dg denote the Haar

integral of a function f on G. Let Uα, α ∈ Ĝ denotes the irreducible unitary

representation of G in the finite dimensional Hilbert space Vα. We reserve the

symbol dα for the dimension of Uα. Thus, dα is a positive integer. Also, we de-

note by χα and tαij (i,j = 1,2, . . . ,dα), α∈ Ĝ the character and matrix elements

(coordinate functions) of Uα, respectively.

Let Lp(G) be the space of all functions f equipped with the norm

‖f‖p =
{∫
G

∣∣f(g)∣∣pdg}1/p
. (2.1)

We write ‖·‖p instead of ‖·‖Lp(G), and L∞ = C is the corresponding space of

continuous functions, and ‖f‖ =max{|f(g)| : g ∈ G}. As it is known (see [4]
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or [10, page 99]), the space L2(G) can be decomposed into the sum

L2(G)=
∑
α∈Ĝ

⊕Hα, (2.2)

where

Hα =
{
f ∈ C(G) : f(g)= tr

(
Uα(g)C

)
, C =Hom

(
Vα,Vα

)}
. (2.3)

This theorem is one of the most important results of the harmonic analysis on

compact groups. The orthogonal projection Yα : L2(G)→Hα is given by

(
Yαf

)
(g)= dα

∫
G
f(h)χα

(
gh−1)dh, (2.4)

where (Yαf)(g) does not depend on the choice of a basis in L2. Carrying out

this construction for every space Hα, α ∈ Ĝ, we obtain an orthonormal basis

in L2 consisting of the functions
√
dαtαij, α ∈ Ĝ, 1 ≤ i,j ≤ dα. Any function

f ∈ L2(G) can be expanded into a Fourier series with respect to this basis

f(g)=
∑
α∈Ĝ

dα∑
i,j=1

aαijt
α
ij(g), (2.5)

where the Fourier coefficients aαij are defined by the following relations:

aαij = dα
∫
G
f(g)tαij(g)dg, (2.6)

such that tαij(g) = tαij(g−1), where g−1 is the inverse of g. Note that (2.5) is a

convergent series in the mean and that the Parseval’s equality

∫
G

∣∣f(g)∣∣2dg =
∑
α∈Ĝ

1
dα

dα∑
i,j=1

∣∣∣aαij
∣∣∣2

(2.7)

holds. The aforementioned result of harmonic analysis on a compact group

can be found, for example, in [4, 5, 7, 10].

We denote by Shu the generalized translation operator on compact group G
defined by

(
Shuf

)
(g)=

∫
G
f
(
tut−1g

)
dt,(�uf

)
(g)= f(g)−(Shuf

)
(g)= (

E−Shu
)
f ,

(2.8)
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where u,g ∈G and E is the identity operator. We set

�k
uf =�u

(
�k−1
u f

)
= (
E−Shu

)kf = k∑
i=0

(−1)k+iCik Shiu f , (2.9)

in which Sh0
uf = f and Shu(Shi−1

u f)= Shiu f , i= 1,2, . . . ,k and k∈N.

We note that α is a complicated index. Since Ĝ is a countable set, there are

only countably manyα∈ Ĝ for whichααij ≠ 0 for some i and j; enumerate them

as {α0,α1, . . . ,αn, . . .}. So, dα0 < dα1 < dα2 < ··· < dαn< ···. Because of that,

the symbol “α<n” is interpreted as {α0,α1, . . . ,αn−1} ⊂ Ĝ, and α≥n denotes

the set Ĝ\(α < n). Let dα, as usual, be the dimension of Uα. For typographical

convenience, we write dn for the dimension of the representation Uαn , n =
1,2, . . . . (See [5, page 458].)

We denote by En(f)p the approximation of the function f ∈Lp(G) by “Spher-

ical” polynomials of degree not greater than n:

En(f)p = inf



∥∥f −Tn∥∥p : Tn ∈

∑
α<n,α∈Ĝ

⊕Hα

. (2.10)

The sequence of best approximations {En(f)p}∞n=0 is a constructive charac-

teristic of the function f . In the capacity of structural characteristic of the

function f on a compact group G, we define its Spherical modulus of smooth-

ness of order k by

ωk(f ;τ)p = sup
{∥∥(E−Shu

)kf∥∥p :u∈Wτ
}
, (2.11)

where Wτ is a neighborhood of e in G. In other words,

Wτ =
{
u : ρ(u,e) < τ, u∈G}, (2.12)

where ρ is a pseudometric on G and τ is any positive real number. It is easy

to show the following properties of ωk(f ,τ)p :

(a) limτ→0ωk(f ,τ)p = 0;

(b) ωk(f ,τ)p is a continuous monotonically increasing function with re-

spect to τ ;

(c) ωk(f1+f2,τ)p ≤ωk(f1,τ)p+ωk(f2,τ)p ;

(d) ωk+l(f ,τ)p ≤ 2lωk(f ,τ)p, l= 1,2, . . . .

3. Main results. We need the following simple but useful lemma.
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Lemma 3.1. The following equality holds for all u,g ∈G:

(
Shu tαij

)
(g)= χα(u)

dα
tαij(g). (3.1)

Proof. Using the orthogonality relations and other formulas for matrix

elements tαij(g) (see [7, page 189]), we have

∫
G
tαij
(
tut−1g

)
dt =

dα∑
p=1

dα∑
q=1

tαqp(u)t
α
ij(g)

∫
G
tαiq(t)t

α
qp(t)dt

= 1
dα

dα∑
p=1

tαpp(u)t
α
ij(g)=

1
dα
χα(u)tαij(g).

(3.2)

This proves the lemma.

The following formula is the particular event of the above lemma:

∫
G
χα

(
tut−1g

)
dt = χα(u)χα(g)

dα
. (3.3)

It can be called a Weyl formula.

We note that the expansion (2.5) is connected with the expansion

f(g)=
∑
α∈G

Yα(f)(g), Yα ∈Hα, (3.4)

which is defined by (2.4), that is, by the equality

Yα(f)(g)=
dα∑
i,j=1

aαijt
α
ij(g). (3.5)

Thus, the coefficients aαij are defined by (2.6). Using Lemma 3.1 and the defi-

nition of Yα, we obtain

Yα
(
Shuf

)
(g)=

dα∑
i,j=1

aαij

∫
G
tαij
(
tut−1g

)
dt

=
dα∑
i,j=1

aαij
χα(u)
dα

tαij(g)

= χα(u)
dα

Yα(f)(g).

(3.6)

The following are simple facts with frequent usage: if f ∈ Lp , then

(1) ‖Shuf‖p ≤ ‖f‖p ;

(2) ‖f −Shuf‖p → 0 as u→ e;
(3) (Yα(Shuf))(g)= (χα(u)/χα(e))(Yαf)(g) for all α∈ Ĝ.

We note that χα(e)= dα.
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Theorem 3.2. If f ∈ L2 and f is not constant, then

En(f)2 ≤
√

dn
dn−2k

ωk
(
f ;

1
n

)
2
, n= 1,2, . . . . (3.7)

Proof. Let f ∈ L2 and Sn(f ,g) denote the nth partial sum of the Fourier

series (2.5), that is,

Sn(f ,g)=
∑
α<n

dα∑
i,j=1

aαijt
α
ij(g)=

n∑
p=0

dαp∑
i,j=1

aαpij t
αp
ij (g). (3.8)

Using Parseval’s equality for the compact group G, we have

E2
n(f)2 =

∥∥f −Sn(f)∥∥2
2 =

∑
α≥n

1
dα

dα∑
i,j=1

∣∣∣aαij
∣∣∣2
. (3.9)

Using (3), it is not hard to see that

(
Yα

(�kf
))
(g)=

(
1− χα(u)

dα

)k(
Yαf

)
(g), α∈ Ĝ. (3.10)

Consequently, (�kf )(g)=∑
α∈Ĝ(1−χα(u)/dα)kaαijtαij . By another application

of Parseval’s equality, we obtain

∥∥�k
uf

∥∥2
2 =

∑
α∈Ĝ

1
dα

dα∑
i,j=1

∣∣∣∣1− χα(u)
dα

∣∣∣∣
2k∣∣∣aαij

∣∣∣2 ≥
∑
α≥n

1
dα

dα∑
i,j=1

∣∣∣∣1− χα(u)
dα

∣∣∣∣
2k∣∣∣aαij

∣∣∣2

=
∑
α≥n

1
dα

dα∑
i,j=1

(
1− 2Reχα(u)

dα
+
∣∣χα(u)∣∣2

d2
α

)k∣∣∣aαij
∣∣∣2
.

(3.11)

Now, using Bernolly’s inequality (1+x)k ≥ 1+kx for x ≥−1, we obtain

∥∥∥�k
uf

∥∥∥2

2
≥

∑
α≥n

1
dα

dα∑
i,j=1

(
1− 2kReχα(u)

dα
+ k

∣∣χα(u)∣∣2

d2
α

)∣∣∣aαij
∣∣∣2
. (3.12)

Consequently,

∥∥∥�k
uf

∥∥∥2

2
≥

∑
α≥n

1
dα

dα∑
i,j=1

∣∣∣aαij
∣∣∣2−

∑
α≥n

1
dα

dα∑
i,j=1

2kReχα(u)
dα

∣∣∣aαij
∣∣∣2

; (3.13)

therefore,

E2
n(f)2 ≤

∥∥∥�k
uf

∥∥∥2

2
+2k

∑
α≥n

1
dα

dα∑
i,j=1

Reχα(u)
dα

∣∣∣aαij
∣∣∣2
. (3.14)
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Let ΦWτ be a nonnegative integrable function vanishing outsideWτ and satisfy-

ing the condition
∫
GΦWτ (g)dg = 1. For example, we can take ΦWτ = ξWτ /µ(Wτ),

where µ(Wτ) is the Haar measure of Wτ and ξWτ is the characteristic function

of Wτ . Multiplying both sides of (3.14) by ΦW1/n , and integrating with respect

to u on G, and using the equality
∫
G |χα|2dg = 1 (see [7, page 195]), we obtain

∫
G
E2
n(f)2ΦW1/n(u)du≤

∫
G

∥∥∥�k
uf

∥∥∥2

2
ΦW1/n du

+2k
∑
α≥n

1

d2
α

dα∑
i,j=1

∣∣∣aαij
∣∣∣2
∫
G

∣∣χα(u)∣∣ΦW1/n(u)du

≤ sup
∥∥∥�k

uf
∥∥∥2

2
+ 2k
dn

∑
α≥n

1
dα

dα∑
i,j=1

∣∣∣aαij
∣∣∣2
.

(3.15)

Therefore, it is not hard to see that

E2
n(f)2 ≤ω2

k

(
f ,

1
n

)
2

+ 2k
dn
E2
n(f)2. (3.16)

Finally, we obtain

En(f)2 ≤
√

dn
dn−2k

ωk

(
f ,

1
n

)
2

, (3.17)

which proves the theorem.

This theorem is given without proof in [8] for the case where k= 1.

We note that the matrix elements of unitary representations tαij(g) satisfy

the relations

dα∑
j=1

tαij(g)t
α
kj(g)=

dα∑
j=1

tαij(g)t
α
jk(g)=


0 if i≠ k,

1 if i= k. (3.18)

In particular, we have

dα∑
j=1

∣∣∣tαij
∣∣∣2 = 1 �⇒

∣∣∣tαij(g)
∣∣∣≤ 1 (3.19)

for all α∈ Ĝ and i,j = 1,2, . . . ,dα. Furthermore, it is obvious that |aαijtαij(g)| ≤
|aαij|; therefore, according to the sufficient condition for absolutely convergent

Fourier series on the group G, the series
∑
α∈Ĝ

∑α
i,j=1 |aαij| is convergent. Let

A(G) := {f :
∑
α∈Ĝ

∑α
i,j=1 |aαij| < +∞}. Using Theorem 3.2, and repeating the

proof of analogous theorems (see [1, Chapter IX] or [6, Chapter II]) with some

changes, we obtain the following theorems.
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Theorem 3.3. If f(g)∈ L2(G), then

∞∑
n=1

ωk(f ,1/n)2√
n

<+∞ �⇒ f(g)∈A(G). (3.20)

This theorem is analogous to the Szasz theorem of the classical Fourier

series in the case where k= 1 and G = T .

Theorem 3.4. If f(g)∈ L2(G), then

∞∑
n=1

En(f)2√
n

<+∞ �⇒ f(g)∈A(G). (3.21)

This theorem is also analogous to a theorem in trigonometric case proved

by Stechkin [9].

4. Applications to compact group SU(2). The group SU(2) consists of uni-

modular unitary matrices of the second order, that is, matrices of the form

u=
(
α β
−β α

)
, |α|2+|β|2 = 1. (4.1)

Therefore, each element u of SU(2) is uniquely determined by a pair of com-

plex numbers α and β such that |α|2+|β|2 = 1. We have (see [5]) the relation

“(α,β) � (φ,θ,ψ),” where αβ ≠ 0, |α|2+|β|2 = 1, and the parameters φ, θ,

and ψ are called Euler angles defined by

|α| = cos
θ
2

; Argα= φ+ψ
2

; Argβ= φ−ψ
2

. (4.2)

Let φ, θ, and ψ satisfy the conditions

0≤φ< 2π, 0≤ θ <π, −2π ≤ψ< 2π. (4.3)

Also, we know that the dimension of the representation T l of SU(2) is equal

to 2l+1, where l= 0,1/2,1, . . . and the matrix elements of T l for group SU(2)
are defined by

tlmn(u)= e−(nψ+mφ)Plmn(cosθ)i(m−n). (4.4)

Expressing tlmn(u) in terms of Plmn(cosθ), we arrive at the following conclu-

sion:

Any function f(φ,θ,ψ), 0≤φ< 2π , 0≤ θ <π , and −2π ≤ψ< 2π belong-

ing to the space L2(SU(2)) such that

∫ 2π

−2π

∫ 2π

0

∫ π
0

∣∣f(φ,θ,ψ)∣∣2
sinθdθdφdψ<∞ (4.5)
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can be expanded into the mean-convergent series

f(φ,θ,ψ)=
∑
l

l∑
m=−l

l∑
n=−l

αlmne−i(mφ+nψ)Plmn(cosθ), (4.6)

where

αlmn =
2l+1
16π2

∫ 2π

−2π

∫ 2π

0

∫ π
0
f(φ,θ,ψ)ei(mφ+nψ)Plmn(cosθ)sinθdθdφdψ.

(4.7)

In addition, we obtain from Parseval’s equality that

∑
l

l∑
m=−l

l∑
n=−l

1
2l+1

∣∣αlmn∣∣2 = 1
16π2

∫ 2π

−2π

∫ 2π

0

∫ π
0

∣∣f(φ,θ,ψ)∣∣2
sinθdθdφdψ.

(4.8)

Using Theorem 3.2, we obtain the following theorem.

Theorem 4.1. If f(φ,θ,ψ)∈ L2(SU(2)), then

En(f)2 ≤
√

1+ 2
n−1

ωk

(
f ,

1
n

)
2

,

{∑
l≥n

l∑
m=−l

l∑
n=−l

1
2l+1

∣∣αlmn∣∣2

}1/2

≤
√

1+ 2
n−1

ωk

(
f ,

1
n

)
2

.

(4.9)

Using the relation between the polynomial P(α,β)n (z) and Plmn(z), we con-

clude that

Plmn(z)= 2−m
[
(l−m)!(l+m)!
(l−n)!(l+n)!

]1/2

(1−z)(m−n)/2(1+z)(m+n)/2P(m−n,m+n)l−m .

(4.10)

The Jacobi polynomials obtained here are characterized by the condition that

α and β are integers and n+α+β∈ Z+.

Now, we consider the following case.

Let L(α,β)2 [−1,1] be the Hilbert space of the functions f defined on the seg-

ment [−1,1] with the scalar product

(
f1,f2

)=
∫ 1

−1
f1(x)f2(x)(1−x)α(1+x)βdx; (4.11)

then, any function f in this space is expanded into the mean-convergent series

f(x)=
∞∑
n=0

αnP̂
(α,β)
n (x), (4.12)
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where the polynomials P̂ (α,β)n (x) are given by

P̂ (α,β)k (x)= 2−(α+β+1)/2

[
k!(k+α+β)!(α+β+2k+1)

(k+α)!(k+β)!

]1/2

P(α,β)k (x), (4.13)

αn =
∫ 1

−1
f(x)P̂ (α,β)n (x)(1−x)α(1+x)βdx. (4.14)

The Parseval’s equality

∫ 1

−1

∣∣f(x)∣∣2(1−x)α(1+x)βdx =
∞∑
n=0

|α|2 (4.15)

holds. The formulas (4.12), (4.14), and (4.15) are proved for integral nonnega-

tive values of α and β. We can show that they are valid for arbitrary real values

of α and β exceeding −1. Finally, we reach the following theorem.

Theorem 4.2. If f(x)∈ L2[−1,1], then the following hold for Jacobi series:

En(f)2 ≤
√

1+ 2
n−1

ωk

(
f ,

1
n

)
2

,




∞∑
l=n

∣∣αl∣∣2




1/2

≤
√

1+ 2
n−1

ωk
(
f ,

1
n

)
2
.

(4.16)

Note. For the ideas similar to this paper we refer to [2] and its references.
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