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Abstract

In the paper we establish formula for the second regularized trace
of the problem generated by Sturm — Liouville operator equation and
with spectral parameter dependent boundary condition.
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Introduction

Let H be a separable Hilbert space. In the Hilbert space Lo ([0, 7], H) we
consider the following boundary value problem

=y (1) + Ay (t) +q () y (t) = Ay (1), (1)
y(0) =0 (2)
y () = Ay (m) =0 (3)

Here A is a selfadjoint positive definite operator (A > FE, E is identity
operator in H) with a compact inverse, ¢ () is a selfadjoint operator-valued
function in H for each t. Also let ¢ (t) be weakly measurable with properties:

1. It has fourth order weak derivative on [0, 7], ¢® (t) € o (H) and
¢ (t)HUl(H) < const for each t € [0,7], (1=0,4), A¢" (t) € o1(H)
| AgV (¢)|| < const for | = 0,2. Here oy (H) is a trace class (see [12], p.521,
also [9], p.88), class of compact operators in separable Hilbert space, whose
singular values form convergent series. It should be noted that in [12] this
class is denoted by By (H) while in [9] by o1 (H ). We will use the last notation;

2.4 (0)=¢ (7) =q(m) =0;



3. f(q(t)f,f)dt:Ofor each f € H.
0

In direct sum Lo = Ly ([0, 7], H) @ H let’s associate with problem (1)-(3)
for ¢ (t) = 0 the operator Ly defined as

D (Lo) ={Y = (y(t),n) /y =y (7),
—y" (t)+ Ay (t) € Ly ((0,7),H), y(0) =0},

LoY = (=y"(t) + Ay (1), ¥ (7).
Let’s denote by L the perturbed operator: L = L+ @), where

Qy),y(m)=(qt)y(t),0).

It is known that [16] operators Ly and L have a discrete spectrum. Denote
their eigenvalues by p; < e < ... and Ay < Ay < ..., respectively.

The main goal of the paper is to establish a formula for second regularized
trace of operator L. A formula for the first regularized trace of operator L
is obtained in [2].

The formula of regularized trace of Sturm — Liouville operator was first
obtained by I.M.Gelfand and B.M.Levitan (see [8]).

After this work, numerous investigations on calculation of regularized
trace of concrete operators, as well as differential operator equations and
discrete abstract operators appeared (see, for example, [2]-[8], [11], [13]-[15],
[17]-[19]). One can find additional references on the subject in [19].

Individual approach to concrete problems gives sometimes stronger re-
sults in comparison with general theorems. Results for operators generated
by differential operator equations have applications to concrete problems of
mathematical physics.

It should be noted that one of the applications of trace formulas is ap-
proximate calculations of first eingenvalues of differential operators ([4], [5])
and inverse problems ([14]).

1. Preliminaries

Let’s denote the eigenvectors and eigenvalues of operator A by 1, o, ...
and v, < 9 < ... respectively. It is known that (see [16]) if 9, ~ a-i% a > 0,
a > 2 then o
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Let R} be resolvent of operator LZ. In view of asymptotics for py, it
follows that R is from oy (H). In [18] the following theorem was proved

Theorem 1. Let D (Ay) C D (B), where Ay is a selfadjoint positive
discrete operator in separable Hilbert space H, such that Ay' € o1(H) and
let B be a perturbation operator. Assume that there exist a number § €
[0,1) such that BA® is continuable to bounded operator and some number
wel0,1), w+d <1, such that AE(I_(S_W) is a trace class operator. Then
there exist subsequence of natural numbers {n,,} °_, and sequence of closed
contours I',,, € C such that for N > g

m [¥ L[y (D k
im D (=) + 9 > L (BRo(A))"dA | =0
j=1 o k=1

(here {u,} and {\,} are eigenvalues of Ao+ B and Ay, respectively, arranged
in ascending order of their real parts, Ry(\) is a resolvent of Ap).
In particular, for w > 0 it holds

Nm

Tim Y (s = Ay — (Bej 05) =0,

J=1

where {¢;}52, is a basis formed by eigenvectors of Ag.
The conditions of this theorem are satisfied for L2 and L?. Really, if we
1
take Ag = L3, B = LoQ + QLo + Q* (L?> = Ay + B) and § = 3 provided

1 2
LOQLal is bounded, BA&1 is also bounded and for w € [0,1), w < 3~ : a)
o

Aa(lféfw) _ La?(lftifw)

is an operator of the trace class because of asymptotics (1.1). Thus by

1
statement of Theorem 1 for N > 0
w

i (z 02— 2)

n=1

+%/Z (_1;2 —tr [(LoQ + QLo+ Q%) Re(W)] x| =0, (1.2)



2. Regularized trace

Let’s call

Nom 1

li 2 2 1 2

lim Z Ao — - /trq (t)dt | +
n=1 0

k
27m [(LoQ + QLo + Q%) Ry (V)] dX (2.1)
F'IYL -

a second regularized trace of L and denote it by > ()\%2) — u%2)> . Further,
n=1

we will show that it has finite value which doesn’t depend on choice of {n,,}

By virtue of [18, lemma 3] for great m the number of eigenvalues of L2
and L? inside the contour I',, is the same and equals to n,.
In view of (1.2)

1
1 A2 22 2(1)d
lim ,?:1 n— Hn no/tW(t)t +
L N(_l)k_lt L L 2R, M) ax b =
o ;2: - (r[(0Q+QO+Q)O()}) _
Iy,

= Jim | - 271m- / tr [(LoQ + QLo + Q%) Ry (V)] dA—

I'm

—Z /trq . (2.2)

Denote the eigenvectors of Ly by 1,19, - --. By our assumption operator
LoQLy" is bounded, so [LoQ + QLo + Q2] R} is an operator of trace class
and since eigenvectors of Ly form a basis in L5, we can change the first term
on the right — hand side of (2.2) in the following way:

271”, tr [(QLo + Lo@Q + Q%) Ry (V)] d\ =

I'm



27m/z (QLo + LoQ + Q%) Ro (A) hn, ¥n) 1, dX =

((QLo + LoQ + Q*) Ro (N) tn, ¥n) . dX =

2772
== Z ([QLo + Lo@ + Q] thu ), - (2.3)
Note that the eigenvectors {1, } - are of the form (see [2])
— {sin 241) 5. 5im (,07) )
sin (z; osin (x;,m) @i},
2@ pm — sin2x; ,m + 4 ) sin? Tj T ikt Pi 3kT) Pi

(2.4)

k= 17 00, J = 17 o

k=0, j=N,o0,
where x;, are the roots (see [16]) of the equation
v+ x?
ctgrm = . x == (2.5)
T

It is known that eigenvalues of Lo form two sequences: ;0 ~ (/7;, as j —
0o, which correspond to imaginary roots of (2.5) and 1, = v, + x?k =+
Mk, M ~ k% which correspond to real roots of (2.5). To calculate regularized
trace, the following lemma will be required.

Lemma 2.1. If properties 1,2 hold, and v; ~ aj®,a > 0, > 2, then the
following series is absolutely convergent

22k f cos 2 it f;(t)dt

ZZ vj—l—x +

pie 21: k7r—sm2x]k77+4mjksm Tj T

00 ('}/j + ino) 21']'70 f COS 2[13']'7[)tfj (t)dt
0

+ g . .
—_ 20T — sin 2x; o + 4xj o sin® x; 0

_|_



- 1
+ - — (t)dt| | +
Z Z 2@ pm — sin 2w ,m + 4 ) sin? Tjpm T /gj( )

. 4a:j,kfsin2 zjtg; (t)dt ™
0
k=1 j—1 .,

™ 40 fsin2 zjotg;(t)dt
0

+ —
JZJ:V 0/ 2xj0m — sin 2z om + 4z sin® Tjom
——/gj(t)dt < 00, (2.6)

where f;(t) = (q(t)@;,95) , 9;(t) = (@* ()5, ¢5) -

Proof. Let’s denote the sums on the left of (2.6) by s1, s, s3, S4 according
to their order. By virtue of property 2, integrating by parts at first twice,
then four times, we have

™ ™

1
/cos 2zt f; () dt = —m /cos 25t f (1) dt (2.7)
0 AT
/cos 2a; 5t f; (t) dt =
0
= —;f” (7) sin 2@, pm — 1 cos 2zt (t) ' +
- : i ikt fl
(2254)" " (215" T,
1 s
+W /cos 2x, it fjgv) (t) dt. (2.8)
Gk

In virtue of estimate

2250 _ 1 +0 (L) (2.9)

2xj0m — sin 2z om + 4w, sin® Tjom T



using property 1 and relation (2.7) we have

QIJ”(]’)/J' f COS ZIj’Otfj (t) dt
0

2xj0m — sin 2w om + 4w, sin® Tjom

i%’ <%+O (é)) j|fj ()] dt < oo

Jj=N

<

ingk

IN

QxJOICOSQSCJOth( ) dt

[o.¢]
> <
s 2@ 0m — sin 2z, o7 +4x]081n xiom|

< i(%JrO (ﬁ))/\f]’-’(t)\dt.

So, we get that series denoted by s, is absolutely convergent.

k
Then by virtue of (2.8), asymptotics =, ~ k+—— o property || Aq” (t)], <
7

const (norm in oy (H) we denote simply by || - ||1) and (2.7) the following es-
timate holds

2v;xjp [ cos2xtf; (t)dt
0

[e.9] o0
Z Z 2 T — Sin 22, + 4wy sin® x;

-3 (2o () o) [ wla-
:iiO(%)/ﬁKAq”(t) o500l dt < const (2.10)



Since ||¢® <t>H1 < const (Il =

2,4), again by using asymptotics for z;; and
(2.8) we obtain

2xjkfcos2$] ktf (t) dt

o oo > /1 1
;]Zl 2x]k7r—sm2x k7r+4x]k81H25€]k7T ZZ( <k2)>

1 1
X | — | f7 (7) sin 2z —|——<
[%@k‘ i () 327 (22)°

t)]dt| < oo. (2.11)

1
Here it was also used that sin(2x;,m) ~ T

From (2.10) and (2.11) it follows that series denoted by s is also conver-
gent.

Then
0o 00 4xj,kain2(xj,kt)gj (Zf) dt T
0 1
=1 j=1 TjrT — SIN 2T T + 4T SIN" T T T )
22k [ cos 2z xt) g; (t) dt r

[en]

Sy |(2o (%)) [0 -wmnnn - [ oo -

™

:gg (%JFO(%))/Wcostj,ktgj()dt+0(k2>jgj(t)dt .

The last equality in virtue of (2.7) and properties g7 (t) € o1(H), g;(t) €
o1(H) gives that series denoted by s3 converges. Similarly it can be shown
that s4 also converges and this completes the proof of the lemma.
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Now let’s calculate the value of series called the second regularized trace.
For that we prove the following theorem.

Assume that i

/ 9;(l >dt <0 (2.12)

7'(' JR—
T—4
for small 6 > 0.
Theorem 2.1 Let q (t) be an operator-function with properties 1-3, Ly QL

be bounded operator in Lo, and v; ~ a-j%, a >0, a > 2, then provided that
(2.12) holds

i (2) (2) tTQQ (0)
4

trAq(0) +trAq(m)  trq” (0) + trq” (r)
2 8
Proof. It follows from lemma 2.1 and relations (2.2) and (2.3) that

(2.13)

™

- 1
li 2 _ 2__/ 2
e ; A = o, — | tra (t)dt | +
0
k
gm/Z [(LoQ + QLo + Q*)Ro(N)] " dX p =

Ay, [ TR () dt

S5 3) LIRS A p— —

2@ T — sin 2x; ,m + 4x; ), sin® TjET

dajy, [ S f () dt

+ZZZ %+x3k .0 - +

SN 0 2@ pm — sin 2x; ,m + 4x; ) Sin” T 5T

27 k f — cos2z;xt) g; (t) dt m

- 1
+ - — (t)dt | +
, Z 2x k7r—sm2a7]k7r—|—4a7]ksmzx]k7r W/g]()
0




22 [ (1 — cos 2 ,t) g (t)dt -
0

oo o0
+ . : — = [ g;(t)dt| =
jzl:\f kz_% 2w T — Sin 2w, + 4wy psin’ i W 9:(1)
=N k= 0

4y [ cos 2t f; (t)dt
0

== (n+aiy) -

2@ pm — sin2x;,m + 4x; ), sin® Tj T

o daj [ cos 2t f; (t) dt
Z Z (% Jv’“) 2, — SIn 22w + 4w ) Sin® x; m

22k [ (1 — cos2x;,t) g; (t) dt ™
0

- [awa|+

2w T — Sin 2w, + 4wy psin® T W /

+
WE
| — |

2w [ (1 — cos2x;t) g; (t) di ™
0

o0 o0 1
+ - = (t)dt| . (2.14
JZJ:V kz_% 2w, — Sin 2w, + dajpsin xim W /gj ®) (2.14)

=N k= 0

At first derive a formula for the fourth term on the right of (2.14). For that
consider

o oo 22 [ g; (t) dt L7
0
Z 21,k — sin 2z, + 4z, sin® x; W—;/gj(t)dt

Let’s calculate the value of the inner series for each fixed j

o0

ij,k . l _
Z 2@ T — sin2x; ,m + 4x; ), sin? Tjpm T

k=0
N—-1
= lim : - — - — (2.15)
N—oo £~ 22, ,m™ — SIn 2x ;5™ + 4xjpSin” X W

Denote the partial sum of above series by T and investigate its behavior
as N — oo. Let’s express the k-th term of the sum Ty as a residue at a pole

10



xj of some function of complex variable z for which x;,..,x; 5 are poles.
Thus, consider the following complex-valued function

—Z

g(z) = (2.16)

zetgem — 22 — ;) sin? 2w
J

for which as it is easy to see that z;; and k are simple poles. The residue at
the point x; is

_ J» _
res g(z) = =
Z=Tj,k T k . 9

Ctgl'ﬁkﬂ' - V3  _ — 2xj,k SIN” Xj T
SIN” T T

2xj,k

- . . 7
2w T — Sin 22,7 + 4xj g sin® x;

at the point £ is

—k 1

Ziig(z) - (k cos km — k?sin km — ~y; sin k) wcos mk T

Now take a rectangular contour of integration with vertices at points
+iB, Ay £ 4B, which has cut at iz;o and will pass it by on the left, and
the points —ix;o and 0 on the right. Take also B > x;09. Then B will go
to infinity and Ay = N + % For this choice of Ay we have z;y_1 < Ay <
zj N, and the number of points ;) inside of contour of integration equals N
(k=0,N—-1).

One could easily show that inside this contour the function zctgzm—22—;
has exactly N roots, so x;y_1 < Ay < 2 n.

Function (2.16) is an odd function of z, that’s why the integral along the
part of the contour on imaginary axis as well along semicircles centered at
+x; vanishes.

If 2 = u+ 4v then for large v and u > 0, the order of g (z) is O (e=27Vl),
and for chosen Ay the integrals along upper and lower sides of contour go to
zero as B — oo

So, we come to the following equality

An+iB

T I / o +
=— lim
N o oo  (zctgzm — 22 — ;) sin® 2

11



—|—i lim / —edz , (2.17)

27 r—0 (zctgem — 22 — ;) sin® 27
2| =7
—5<p<3

where in the second integral z = re’?.
As N — oo, the first term on the right of (2.17) is equivalent to

1 dz

) 2zsin? 2w — sin 227
AN—iOO

o0

= / L sh2vrm ’ (2.18)
T (An +iv) (1 + ch2vum) —

)
whose absolute value is less then

o0

1 / dv B
T ) 2|Anx+iv| (14 ch2vrm) — |sh2um|

— o0

17 1
~or sh2vm dv <
T AL F 02 (14 ch2ur) —
- 1 / dv
2ANT sh2vum
e (1+ch2ur) — ———
( ) 2,/ A3 + v?
1 7 dv const
< = . (2.19)
1 h2
QANW,OO 1+ ch2vm — # An
Therefore,
™ AN+7,00
/ T / / zdzdt
w5t 2mi 9 (1 (zctgem — 22 — ;) sin® 27
0 An—ioco
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1 zdz
—— lim (t) dt . 2.20
omiro | Y ®) / (zctgam — 22 — ;) sin® 27 (2.20)
0 |z| =r
—5<p<3
Butasr — 0
1 / zdz
27i (zctgzm — 22 — ;) sin? 27
2| =7
- <p<3
1 / zdz B
271 Zsinzm — v, sin? zm
|z| =r
-5 <p<3
bl , bl
1 ir?e*#dyp 1 dp 1 1
o 2mi : r2e2em — y;mir2e?iy 27 | = v o o2rl— v
-3 —3
(2.21)
So, using (2.17), (2.18), (2.19) and (2.21) in (2.20) we have
im [ Twg; (t) dt ! / (t) dt (2.22)
im : = ; : :
—00 NYj 2 (1 — ’)/jﬂ') 95
0
Now let’s derive calculations for
N-1 2:1ij fCOS QZIijtgj (t) dt
0

Sn(t) == Z 2x; p T — Sin 2 1.7 + Ax; psin? x
kIO J7k J7k ]7k ]7k

Consider the complex valued function
zcos 2zt
(zctgam — 22 — ;) sin® 27
221 COS 2% 1t
whose residues at the poles k and x , equal — dok Jok —5
Sin 22 1™ — 2x; 1™ — 4% SIn” 22 7

G(z) =

cos 2kt
an , respectively. Again take as a contour of integration the above
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considered contour. One could show that as N — oo

1 const
— G dz ~ —. 2.23
27 / (2) dz Ay cos % ( )
AN—iOO

Thus, if g; (¢) has the property (2.12), then

An+ico
A}im / G (z) dzdt = 0. (2.24)
AN —ico

In virtue of (2.24)

™ T

lim /SN (t)g; (t)dt = — lim [ My (t)g; (t) dt+

N—oo

0

o

1 r zcos 2zt
—1i t dt 2.25
Tomiot | 9 ®) / (zctgem — 22 — ;) sin® zm (2.25)
0 |z| =7
—5<p<3
where
i\]: cos 2kt
k=1
Since
[ g; (m) + 95 (0)
A}linoo My (t) g Z/gj cos 2ktdt = #,
1 ™
———— [ g; (t)dt, then

and the second term in (2.25) as r — 0 goes to
2m (L —y;m) o

™

lim [ Sy (t) g, (t)dt = -2 WI% © 27T<11_W) / g; () dt. (2.26)

™

N—oo
0
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Combining (2.22) and (2.26), we get

0o 0o 2.Z‘jk f (1 — COS QIJ]J) gj (t) dt 7T
0 1
= = Tjpm — sin2x; ,m + 4z psin” xjpm 0w /
= [ t t
:Z_g<>+gj<o>+/( g (1) 50 Yo
= 4 ) 2 (1 —ym) 2w (1 —yym)
g (m = 9j (O
-3 ulhis® 5l 2
j=N

Here the condition

95 (1) = (¢ (7) 5, 05) = (q(7) @5, q (7)) = 0

is used.

By similar computations (this time contour of integration by—passes only
the origin along small semicircle, since this time the chosen complex function
has no imaginary roots), we will have

2y, f — cos 2xit) g; (t) dt

(e.)
Z 2xjpm — sin 2z, + 434 sin® Tj T

_l/gj () dt | = N %O (2.28)

m :
0 7=l

From (2.27) and (2.28) the sum of values of two last series in (2.14) gives

=2

-1

9;(0) g (0)  trg*(0)
4 _Jz;v 4 4

j=1

By the method used above, we may derive all calculations also for the
first two series in (2.14) and come finally to formula (2.13).
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