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Abstract

In the article, spectrum of operator generated by differential oper-

ator expression given on semi axis is investigated and proved formula

for regularized trace of this operator.
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Introduction

Let H be a separable Hilbert space with a scalar product (., .) and norm ‖.‖.

Consider in L2((0,∞) , H) the problem

l[y] ≡ −y′′(x) + xy(x) + Ay(x) + q(x)y(x) = λy(x) (1)

y′(0) = 0, (2)

where A is a self-adjoint positive-definite operator in H which has a com-

pact inverse operator and A > E (E is an identity operator in H). Denote

the eigenvalues and eigenvectors of the operator A by γ1 ≤ γ2 ≤ . . . , and

ϕ1, ϕ2, . . . , respectively.

Suppose that operator-valued function q(x) is weakly measurable, ‖q(x)‖

is bounded on [0,∞), q∗(x) = q(x)∀x ∈ [o,∞). The following properties

hold:

(1)
∑∞

k=1

∫∞
0
|(q(x)ϕk, ϕk)| dx < const, ∀x ∈ [0,∞).

(2)
qk(x)

x
((q(x)ϕk, ϕk) = qk(x)) is summable on (0,∞),

∫∞
0

qk(x)

x
dx = 0 for

∀k = 1,∞.

(3)
∫ δ

0

qk(x)

x5
dx < ∞, δ > 0, ∀k = 1,∞.
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In the case q(x) ≡ 0 in L2(H, (0,∞)) associate with problems (1), (2) a

self-adjoint operator L0 whose domain is

D(L0) = {y(x) ∈ L2(H, (0,∞)/l[y] ∈ L2(H, (0,∞), y′(0) = 0} .

In the case q(x) 6= 0 denote the corresponding operator by L, so L =

L0 + q.

In this article the asymptotics of eigenvalues and the trace formula of

operator L will be studied.

In [1] the regularized traces of all orders of the operator generated by the

expression

l(y) ≡ (−1)n d2ny

dx2n
+ xy

and the boundary conditions

km∑
j=0

amjy
(km−j)(0) = 0, m = 1, n,

am0 = 1, kn < kn−1 < · · · < k1 < 2n

are obtained.

In [2] the sum of eigenvalue differences of two singular Sturm–Liouville

operators is studied.

The asymptotics of eigenvalues and trace formulas for operators generated

by differential expressions with operator coefficients are studied, for example,
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in [3–7]. We could also refer to papers [8–10] where trace formulas for ab-

stract operators are obtained. Trace formulas are used for evaluation of first

eigenvalues, they have application to inverse problems, index theory of oper-

ators and so forth. For further detailed discussions of the subject refer to [11].

1 The asymptotic formula for eigenvalues of

L0 and L

One could easily show that under conditions A > E, A−1 ∈ σ∞, the spectrum

of L0 is discrete.

Suppose that γk∼ akα(k →∞, a > 0, α > 0). Denote yk(x) = (y(x), ϕk).

Then by virtue of the spectral expansion of the self-adjoint operator A we

get the following boundary-value problem for the coefficients yk(x):

−y′′k(x) + xyk(x) + γkyk(x) = λyk(x), (1.1)

y′k(0) = 0. (1.2)

In the case x + γk>λ solution of problem (1.1) from L2(0,∞) is

ψ(x, λ) =
√

x + γk − λK 1
3

{
2

3
(x + γk − λ)

3
2

}
(1.3)

4



and in the case x + γk< λ we can write it as a function of real argument as

ψ(x, λ) =

=
√

λ− γk − x

{
J 1

3

(
2

3
(λ− γk − x)

3
2

)
+ J− 1

3

(
2

3
(λ− γk − x)

3
2

)}
. (1.4)

For this solution to satisfy (1.2) it is necessary and sufficient to hold

π√
3
(λ− γk)

{
J 1

3

(
2

3
(λ− γk − x)

3
2

)
+ J− 1

3

(
2

3
(λ− γk − x)

3
2

)}
= 0 (1.5)

at least for one γk(λ 6= γk). Therefore, the spectrum of the operator L0

consists of those real values of λ 6= γk such that at least for one k

z2

[
J 2

3

(
2

3
z3

)
− J− 2

3

(
2

3
z3

)]
= 0, (1.6)

where z =
√

λ− γk.

Prove the following two lemmas which we will need further.

Lemma 1.1. Equation (1.6) has only real roots.

Proof. Suppose that z = iα, α ∈ R, α 6= 0. Then the operator associated

with problem

−y
′′
k (x) + xyk(x) = z2yk(x) (1.7)

y′k(0) = 0 (1.8)

is positive and its eigenvalues are squares of the roots of Equation (1.6). So,

(
−y

′′
k (x), yk(x)

)
+ (xyk(x), yk(x)) ≥ 0.
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But

(
z2yk(x), yk(x)

)
= −α2(yk(x), yk(x)) < 0

which is contradiction. Then z can be only real, otherwise, the selfadjoint

operator corresponding to (1.7), (1.8) will have nonreal eigenvalues, which is

impossible. The lemma is proved.

Now, find the asymptotics of the solutions of Equation (1.6). By virtue

of the asymptotics for large |z| [12, p. 975]

Jν(z) =

√
2

πz
cos

(
z − νπ

2
− π

4

) (
1 + O

(
1

z

))

we get

sin

(
2

3
z3 − π

4

)(
1 + O

(
1

z

))
= 0. (1.9)

Hence

z =

√
3πm

2
+

3π

8
+ O

(
1

m

)
=

(
3πm

2

) 1
3

+ O

(
1

m
2
3

)
, (1.10)

where m is a large integer. Therefore, the statement of the following lemma

is true.

Lemma 1.2. For the eigenvalues of L0 the following asymptotic is true

λm,k = γk + α2
m, αm = cm

1
3 + O

(
1

m
2
3

)
. (1.11)
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For large |z| consider the rectangular contour l with vertices at the points

±iB,AN ± iB, AN =
3

√
3πN

2
+

9π

8

which bypasses the origin along the small semicircle on the right side of the

imaginary axis.

The following lemma is true.

Lemma 1.3. For a sufficiently large integer N the number of the roots

of the equation inside l is N + O(1).

Proof. For large |z| we have

z2

[
J 2

3

(
2

3
z3

)
− J− 2

3

(
2

3
z3

)]
= z2

√
2

πz3

(
cos

(
2

3
z3 − 7π

12

)
−

− cos

(
2

3
z3 +

π

12

))(
1 + O

(
1

z

))
=

= z

√
2

πz

(
sin

(
2

3
z3 − π

4

)
+ O

(
1

z

))
. (1.12)

Denote the function in braces on the right hand side of (1.12) by F (z).

Then for large |z| by Rouches’ theorem the number of the zeros of F (z) inside

the contour equals the number of the zeros sin

(
2

3
z3 − π

4

)
. Therefore, the

number of the zeros of function

z2

[
J 2

3

(
2

3
z3

)
− J− 2

3

(
2

3
z3

)]

inside l is N + O(1).
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Now, by using the above results , derive the asymptotic formula for the

eigenvalue distribution of L0.

Denote the distribution function of L0 by N(λ). Then

N(λ) =
∑

λm,k<λ

1.

So, N(λ) is a number of positive integer pairs (m,k) for which

γk + α2
m<λ.

By Lemma 1.2 for the great values of m

(c− ε) m
2
3 < α2

m < (c + ε) m
2
3 .

From the asymptotics of γk we have

(a− ε) kα < γk < (a + ε) kα.

Hence, by virtue of Lemmas 1.1 and 1.3

N ′′(λ) + O(1) < N(λ) < N ′(λ) + O(1), (1.13)

where N ′′(λ) is the number of the positive integer pairs for which

(a + ε) kα + (c + ε) m
2
3 < λ, (1.14)
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N ′(λ) is the number of the positive integer pairs (m, k) satisfying the in-

equality

(c− ε) m
2
3 + (a− ε) kα < λ. (1.15)

Thus by using (1.14), (1.15) in (1.13) as in [13, Lemma 2] we come to the

following statement.

Lemma 1.4. If γk ∼ akα, (0 < a, α > 0) then

λn ∼ µn ∼ dnδ

where

δ =





2α

2 + 3α
, α ∈

(
0,

2

3

)

α

2
, α >

2

3
1

3
, α =

2

3

(1.16)
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2 Trace formula

The following lemma is true.

Lemma 2.1. Let the conditions of Lemma 1.4 hold. Then for α >
2

3

there exists such a subsequence {nm} of natural numbers that the relation

µk − µnm ≥
d

2

(
k

α
2 − n

α
2
m

)
, k = nm, nm + 1, . . .

holds.

Proof. In virtue of Lemma 1.4 for α >
2

3
, limn→∞

µn

n
α
2

= d, from which

it follows that

lim
n→∞

(
µn − d

2
n

α
2

)
= ∞.

That is why one could choose a subsequence n1 < n2 < . . . .nm < . . . , that

for each k ≥ nm holds µk− d

2
k

α
2 ≥ µnm −

d

2
n

α
2
m, or µk−µnm ≥

d

2

(
k

α
2 − n

α
2
m

)
.

The lemma is proved.

We will call limm→∞
∑nm

n=1 (λn − µn) a regularized trace of the operator

L. It will be shown later it is independent of the choice of {nm} satisfying

the hypothesis of Lemma 2.1.

From (1.16) it is obvious that for α > 2 resolvents R(L0) and R(L) are

trace class operators. By using Lemma 2.1 for α > 2 one can prove the

following lemma.
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Lemma 2.2. Let ‖q(x)‖ < const on the interval [0,∞) and also the

conditions of Lemma 1.6 hold. Then for α > 2

lim
m→∞

nm∑
n=1

(λn − µn − (qψn, ψn)) = 0, (2.1)

where {ψn} are orthonormal eigenvectors of the operator L0.

The proof of this lemma is analogous to the proof of Lemma 2 and The-

orem 2 from [8]. For this reason we will not derive it here.

The orthogonal eigen-vectors of the operator L0 in L2((0,∞), H) are

ψm,k = cm,kψ(x, α2
m)ϕk. (2.2)

Calculate their norm. We have

‖ψm,k‖2 = c2
m,k

∞∫

0

ψ(x, α2
m)2dx. (2.3)

Take in Equation (1.7) z2 = α2 and z2 = β2. The solutions corresponding

to these values denote by ψ (x, α2) and ψ (x, β2). Multiplying the first of

the obtained equations by ψ (x, β2), the second by ψ (x, α2), subtracting the

second one from the first one and integrating from zero to infinity we get

∞∫

0

ψ
(
x, α2

)
ψ

(
x, β2

)
dx =

ψ (0, α2)
′
ψ (0, β2)− ψ (0, α2) ψ (0, β2)

′

α2 − β2
=

π2

3
αβ


α

{
J 2

3

(
2
3
α3

)− J− 2
3

(
2
3
α3

)}{
J 1

3

(
2
3
β3

)
+ J− 1

3

(
2
3
β3

)}

α2 − β2
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β
{

J 1
3

(
2
3
α3

)
+ J− 1

3

(
2
3
α3

)}{
J 2

3

(
2
3
β3

)− J− 2
3

(
2
3
β3

)}

α2 − β2


 .

Going to limit as α → β, we get

∞∫

0

ψ
(
x, α2

)2
dx =

=
π2

6

[
β

(
J 2

3

(
2

3
β3

)
− J− 2

3

(
2

3
β3

))(
J 1

3

(
2

3
β3

)
+ J− 1

3

(
2

3
β3

))
+

+ β2

{
J 1

3

(
2

3
β3

)
+ J− 1

3

(
2

3
β3

)) (
J 2

3

(
2

3
α3

)
− J− 2

3

(
2

3
α3

))′

α=β

−

−
(

J 1
3

(
2

3
α3

)
+ J− 1

3

(
2

3
α3

))′

α=β

(
J 2

3

(
2

3
β3

)
− J− 2

3

(
2

3
β3

))
.

By making use of identities (12, p.981)

zJ ′ν(z) + νJν(z) = zJν−1(z) (2.4)

zJ ′ν(z)− νJν(z) = −zJν+1(z), (2.5)

we have
∞∫

0

ψ
(
x, α2

)2
dx =

π2

3
α4×

×
[(

J 1
3

(
2

3
α3

)
+ J− 1

3

(
2

3
α3

))2

+

(
J 1

3

(
2

3
α3

)
+ J− 1

3

(
2

3
α3

))2
]

. (2.6)

Finally by equation

β2

{
J 2

3

(
2

3
β3

)
− J− 2

3

(
2

3
β3

)}
= 0

12



we get

‖ψm,k‖2 = c2
m,k

π2

3
α4

m

(
J 1

3

(
2

3
α3

)
+ J− 1

3

(
2

3
α3

))2

. (2.7)

So, the orthonormal eigenvectors of L0 are

ψm,k =

√
3ψ (x, α2

m)

πα2
m

(
J 1

3

(
2
3
α3

m

)
+ J− 1

3

(
2
3
α3

m

))ϕk. (2.8)

Lemma 2.3. If the operator-valued function q(x) has property 1 and

α >
2

3
, then

3

π2

∞∑

k=1

∞∑
m=1

∣∣∣∣∣∣∣

∞∫

0

(q(x)ϕk, ϕk) ψ (x, α2
m)

2
dx

α4
m

(
J 1

3

(
2
3
α3

m

)
+ J− 1

3

(
2
3
α3

m

))2

∣∣∣∣∣∣∣
< ∞. (2.9)

Proof. Take (q(x)ϕk, ϕk) = qk(x). Let ε > 0 be sufficiently small

number. If x ∈ (0, α2
m − αε

m) then z = α2
m − x ∈ (α2

m, αε
m). For x ∈

(α2
m − αε

m, α2
m + αε

m) we have z ∈ (−αε
m, 0] ∪ (0, αε

m) and, finally, for x ∈

(α2
m + αε

m, +∞) it will be z ∈ (−∞,−αε
m).

Consequently for z ∈ (α2
m, αε

m) we have

ψ
(
x, α2

m

)
=

√
α2

m − x

(
J 1

3

(
2

3
α2

m − x

) 3
2

+ J− 1
3

(
2

3
α2

m − x

) 3
2

)
∼ e−i

√
z3

z
,

and for z ∈ (−∞,−α3
m)

ψ
(
x, α2

m

)
=

√
x− α2

mK 1
3

(
2

3

(
x− α2

m

) 3
2

)
∼ e−

√−z
3

−z
,
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then ∣∣∣∣∣∣

∞∫

0

qk (x) ψ
(
x, α2

m

)
dx

∣∣∣∣∣∣
∼

∣∣∣∣∣∣∣

αε
m∫

α2
m

e−2i
√−z

z2
qk

(
α2

m − z
)
dz+

+

αε
m∫

α2
m

qk

(
α2

m − z
)
ψ2 (z) dz +

−αε
m∫

−∞

e−2
√−z3

z2
qk

(
α2

m − z
)
dz

∣∣∣∣∣∣∣
<

<

∞∫

0

|qk (z)| dz +

−αε
m∫

αε
m

∣∣qk

(
α2

m − z
)
ψ2 (z)

∣∣ dz +

∞∫

0

|qk (z)| dz. (2.10)

For ε → 0 we have

lim
ε→0

−αε
m∫

αε
m

∣∣qk

(
α2

m − z
)
ψ2 (z)

∣∣ dz =

=

1∫

−1

∣∣qk

(
α2

m − z
)
ψ2 (z)

∣∣ dz < c

1∫

−1

|qk (z)| dz < ∞. (2.11)

From asymptotic αm ∼ cm
1
3 by using (2.10), (2.11) and property 1 we

get

∞∑

k=1

∞∑
m=1

3

π2

∞∫

0

∣∣∣∣∣∣∣
qk (x) ψ (x, α2

m)
2
dx

α4
m

(
J 1

3

(
2
3
α3

m

)
+ J− 1

3

(
2
3
α3

m

))2

∣∣∣∣∣∣∣
<

<

∞∑

k=1

∞∫

0

|qk (x)| dx

∞∑
m=1

1

m
4
3

< ∞.

The lemma is proved.

By using Lemma 2.3 prove the following theorem.
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Theorem 2.1. Let the conditions of Lemma 1.6 hold. If the operator-

valued function q (x) has properties 1–3, then it holds the formula

lim
m→∞

nm∑
n=1

(λn − µn) = 0.

Proof. In virtue of Lemma 2.1

lim
m→∞

nm∑
n=1

(λn − µn) =
∞∑

k=1

∞∑
m=1

∞∫

0

3

π

qk (x) ψ (x, α2
m)

2
dx

α4
m

(
J 1

3

(
2
3
α3

m

)
+ J− 1

3

(
2
3
α3

m

))2 . (2.12)

Denote

TN(x) =
N∑

m=1

3

π2

ψ (x, α2
m)

2

α4
m

(
J 1

3

(
2
3
α3

m

)
+ J− 1

3

(
2
3
α3

m

)) .

Show that for each fixed value of k the m-th term of the sum TN (x) is a

residue at the point αm of some function of complex variable which has poles

at points αm

(
m = 1, N

)
.

For this purpose consider the following function

g (z) =
π2

3

(
z2 − x

)2

(
J 1

3

(
2
3
(z2 − x)

3
2

)
+ J− 1

3

(
2
3
(z2 − x)

3
2

))2

2z
(
J 2

3

(
2
3
z3

)− J− 2
3

(
2
3
z3

))2 +

+
J 2

3

((
2
3
(z2 − x)

3
2

)
− J− 2

3

(
2
3
(z2 − x)

3
2

))2

2z
(
J 2

3

(
2
3
z3

)− J− 2
3

(
2
3
z3

))2 . (2.13)
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By taking in place of zero x in (2.6) one can show that

∞∫

x

ψ
(
t, z2

)2
dt =

π2

3

(
z2 − x

)2

[(
J 1

3

(
2

3

(
z2 − x

) 3
2

)
+ J− 1

3

(
2

3

(
z2 − x

) 3
2

))2

+

+

(
J 2

3

(
2

3

(
z2 − x

) 3
2

)
− J− 2

3

(
2

3

(
z2 − x

) 3
2

))2
]

. (2.14)

Note that all zeros of the function J 2
3

(
2

3
z3

)
− J− 2

3

(
2

3
z3

)
are simple,

otherwise
(

J 2
3

(
2

3
z3

)
− J− 2

3

(
2

3
z3

))′

z=αm

=

= 2α2
m

(
J− 1

3

(
2

3
α3

m

)
+ J 1

3

(
2

3
α3

m

)
− 1

α3
m

(
J 2

3

(
2

3
α3

m

)
− J− 2

3

(
2

3
α3

m

)))
=

= 2α2
m

(
J− 1

3

(
2

3
α3

m

)
+ J 1

3

(
2

3
α3

m

))
= 0

and by virtue of (2.7) the norm of the eigenvectors equals zero, which is

contradiction.

Denote z2 − x = f (x, z) and the right hand side of (2.14) by G(f(x, z).

Then

G′
x = −G′

f , G′
z = 2zG′

f = −2zG′
x. (2.15)

Then from (2.14), (2.15)

G′
x = ψ

(
x, z2

)2
, G′

z = 2zψ
(
x, z2

)2
. (2.16)

The function g(z) has poles of second order at the points αm. By using

identities (2.15), (2.16) show that residues at this points equal the terms of
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sum TN(x). Denoting J 2
3

(
2

3
z3

)
− J− 2

3

(
2

3
z3

)
= u(z), write Taylor expan-

sion of this function in the vicinity αm:

u (z) = (z − αm) u′ (αm) +
(z − αm)2

2!
u′′ (αm) + · · · ,

u2 (z) = (z − αm)2 u′ (αm)2 + (z − αm)3 u′ (αm) u′′ (αm) + · · ·

Show that the coefficient of the expansion of function zu2 (z) at (z − αm)3

equals zero. So,

zu2 (z) = ((z − αm) + αm) u2 (z) = αmu′ (αm)2 (z − αm)2 +

+u′ (αm) (αmu′′ (αm) + u′ (αm)) (z − αm)3 + · · · (2.17)

By denoting
2

3
z3 = w(z) we have

u′ (αm) = 2α2
m

(
J 2

3
(w (z))− J− 2

3
(w (z))

)′
w= 2

3
α3

m

(2.18)

u′′ (αm) = 4α4
m

(
J 2

3
(w(z))− J− 2

3
(w(z))

)′′
w= 2

3
α3

m

+

+4αm

(
J 2

3
(w(z))− J− 2

3
(w(z))

)
w= 2

3
α3

m

. (2.19)

Therefore,

αmu′′ (αm) + u′ (αm) = 2α2
m

(
2α3

mu′′w + 3u′w
)

w= 2
3
α3

m
. (2.20)

On the other hand, J 2
3
(z) and J− 2

3
(z) satisfy the Bessel equation z2d2y

dz2
+

z
dy

dz
+(z2−ν2)y = 0 for ν2 =

4

9
. So their difference also satisfies this equation

17



:

u′′ww2 + wu′w = (ν2 − w2)u. (2.21)

If w =
2

3
α3

m, then the right hand side (2.21) vanishes. Hence,

u
′′
ww2 + wu′w =

2

9
α3

m

[
2α3

mu
′′
w= 2

3
α3

m
+ 3u′

w= 2
3
α3

m

]
= 0 (2.22)

which shows that the coefficient at (z − αm)3 in (2.17) vanishes.

Consequently, by (2.16), (2.17), (2.22) and the relation

(
J 2

3

(
2

3
z3

)
− J− 2

3

(
2

3
z3

))′

z=αm

=

= 2α2
m

[
− 1

α3
m

J 2
3

(
2

3
α3

m

)
+ J− 1

3

(
2

3
α3

m

)
+

1

α3
m

J− 2
3

(
2

3
α3

m

)
+ J− 1

3

(
2

3
α3

m

)]
=

= 2α2
m

(
J 1

3

(
2

3
α3

m

)
+ J− 1

3

(
2

3
α3

m

))

we have

res
z=αm

g(z) = lim
z→αm

[
(z − αm)2 G (f (z, x))

αmu′ (αm)2 (z − αm)2 + cm (z − αm)4 + · · ·

]′
=

= lim
z→αm

G′
z (f (z, x))

αmu′ (αm)2 =
2αmψ (α2

m, x)
2

4α5
m

(
J 1

3

(
2
3
α3

m

)
+ J− 1

3

(
2
3
α3

m

)) .

Take as a contour of integration a rectangular contour C with vertices at

the points ±AN ,±AN + +iB, which bypasses points αm above real axis, -

αm below it.
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Consider the right hand side of the contour with vertices at AN and

AN + iB. By using the asymptotics

J 1
3
(z) + J− 1

3
(z) ∼ e−iz,

J 2
3
(z)− J− 2

3
(z) =

(
J 1

3
(z) + J− 1

3
(z)

)′

−2z2
+ J 1

3
(z) + J− 1

3
(z) ∼ −ie−iz

2z2
+ e−iz,

√
z2 − x

3 ∼ z3 − 3

2
xz.

For x > 0, N →∞ taking B = AN , z = u + iv we have

∞∫

0

qk (x)

AN∫

0

A3
N

e3A2
Nv−v3− 3

2
xv

e3A2
Nv−v3

dvdx =

=

∞∫

0

qk (x)

[
A3

N

e−
3
2
xAN

−3
2
x

+
2A3

N

3x

]
dx. (2.23)

From condition 2
∞∫

0

qk (x)

x
A3

Ndx = 0. (2.24)

By conditions 2–3 as N →∞
∞∫

0

∣∣∣∣
qk (x)

x

∣∣∣∣ A3
Ne−

3
2
xAN dx =

=

∞∫

0

∣∣∣∣
qk (x)

x

∣∣∣∣
A3

N

1 + 3
2
xAN +

( 3
2
xAN)

2

2!
+

( 3
2
xAN)

3

3!
+

( 3
2
xAN)

4

4!
+ · · ·

dx <

<

∞∫

0

∣∣∣∣
qk (x)

x

∣∣∣∣
1

( 3
2
xAN)

4

4!

dx =
const

AN

∞∫

0

∣∣∣∣
qk (x)

x5

∣∣∣∣ dx → 0. (2.25)

19



On the side of the contour with the vertices at ±AN + iB

∞∫

0

qk (x)

AN+iB∫

−AN+iB

g (z) dzdx. ∼
∞∫

0

qk (x)

AN∫

−AN

e−
3
2
xAN A3

Ndudx =

=

∞∫

0

2qk (x) A4
Ne−

3
2
xAN dx <

const

AN

∞∫

0

qk (x)

x5
dx →∞. (2.26)

In the same way as it is done in (2.25), (2.26) we get that

lim
N→∞

∞∫

0

qk (x)

AN+iB∫

−AN+iB

g (z) dzdx = 0.

Similarly, one may show that the integral along the left hand side of the

contour converges to zero:

lim
N→∞

∞∫

0

qk (x)

∫

C

g (z) dzdx = 0.

So, by the Cauchy theorem we finally get

∞∑
m=1

∞∫

0

ψ (α2
m, x)

2
qk (x) dx

α4
m

(
J 1

3

(
2
3
α3

m

)
+ J 1

3

(
2
3
α3

m

))2 = lim
N→∞

∞∫

0

qk (x)

∫

C

g (z) dzdx = 0,

which completes the proof of the theorem.
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